Editor's Choice


Meeting modern needs for conformal coating inspection

12 August 2015 Editor's Choice Manufacturing / Production Technology, Hardware & Services

Modern electronic assemblies are seeing an increase in the popularity of using conformal coatings to guarantee proper functioning under various climatic and environmental conditions. In particular in the areas of automotive, aviation and military, this is essentially important as aggressive environmental conditions may have an impact on an assembly’s performance.

These conformal coatings are categorised into three different classes:

• Class 1: general applications.

• Class 2: high reliability.

• Class 3: aerospace.

Their chemical compositions vary and typically consist of acrylic coatings (organic solvent), epoxy coatings (two-components), urethane coatings, silicones and UV-cured coatings.

First and foremost, conformal coatings provide electrical insulation for the assembly under all possible environment conditions. They serve to guarantee protection against moisture as well as chemical influences. Climatic changes, microbiological effects and pollutants also must not be allowed to affect an assembly’s mechanical or electronic properties.

Hence, the reliability of conformal coatings must be guaranteed to permanently ensure a printed circuit board’s (PCB) functionality under these conditions. But how can conformal coatings effectively and cost-efficiently be checked?

Conformal coatings and their inspection

Assembly inspection for conformal coating inspection.
Assembly inspection for conformal coating inspection.

Applying conformal coating is the last step within the PCB production cycle. Similar to the previous production stages, quality assurance measures must be executed. After coating the assembly, proper wetting is mostly visibly checked by manual means. Because manual optical inspection has proven inappropriate for high PCB output, so-called automated optical conformal coating inspection systems have been developed. They enable automatic testing of the correct wetting within the production line cycle.

Before dealing with the function of an optical inspection system for conformal coating inspection in detail, it should be noted that there are transparent and non-transparent coatings. For transparent coatings it is mandatory they be fluorescent to assist camera evaluation. These fluorescent coatings are UV illuminated, emitting light in the blue range between 400 and 470 nm. Modern camera technology is able to capture this spectral range and take high-contrast images. Image processing technology may now differentiate between the fluorescent coating and dark PCB background. Consequently, a coating flaw is displayed as a dark spot.

In many cases, PCB manufacturers establish a coating plan defining which areas of a PCB conformal coating is to be applied to, and in which areas it must not be applied (forbidden areas). For example, coating should not be applied where the assembly is to be electrically contacted, as it would have an insulating effect impacting or disabling a PCB’s functionality. Additionally, there are positions on which coatings can but do not have to be applied (so-called ‘don’t care areas’).

Selective solder joint inspection.
Selective solder joint inspection.

Particular drawing functions in the optical inspection system enable operators to define the test areas according to the coating plan. Now it is possible to define what can be rated as a coating error by means of a grey value threshold and the maximum defect size.

PCB warpage (vias) may generate false calls, also displayed as dark spots. They are filtered by a special algorithm and not evaluated as faults. Dark components or large boreholes may be wrongly indicated as coating errors as they are also displayed as large dark spots. To avoid misinterpretation, such areas are pre-defined in the inspection system as ‘don’t care areas’ not to be evaluated.

The coating’s flow characteristics must be considered in conformal coating inspection. As varnishings are not static before drying, contours at areas to be inspected may blur. Therefore the inspection area should be carefully selected in the image processing software. Additionally, small ‘ditches’ milled into the PCB around the area to be inspected should be included in the design. These hinder unwanted coating flow into non-coated areas.

Goepel Electronic’s TOM In-Line for automated conformal coating inspection.
Goepel Electronic’s TOM In-Line for automated conformal coating inspection.

Requirements for an inspection system

Fundamental elements of a modern optical test system are PCB-adapted pixel resolutions, the inspection system’s inline ability, flexible test program adjustments as well as special test functions due to coating presence or absence. Separately switchable LEDs in various colours such as white, red, green, blue or UV, a modular architecture for flexibility in terms of changing test tasks, or various camera variants and resolutions are indispensable requirements to execute safe and high-quality evaluation of conformal coatings.

However, the inspection system’s functional area should not be limited to conformal coating evaluation or checking. Goepel Electronic’s TOM In-Line is an optical test system to inspect selective solder joints or displays. A wide range of practical test functions provides for numerous additional inspection tasks. Among others, powerful algorithms for component presence check, shorts inspection, colour detection or OCR are available.

A special benefit of this system is the combination of optical inspection with electrical test by means of JTAG/boundary scan to check an assembly’s correct functionality, producing benefits in terms of an increase in test and fault coverage. Uncoupled from the TOM In-Line apparatus and transport system, all single components such as camera, illumination and software can be integrated, specific to customer needs, into existing or new systems.



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Enhance SiC device efficiency using merged-pin Schottky diodes
NuVision Electronics Editor's Choice Power Electronics / Power Management
Silicon carbide (SiC) has advantages over silicon (Si) that make it particularly suitable for Schottky diodes in applications such as fast battery chargers, photovoltaic (PV) battery converters, and traction inverters.

Read more...
What is Wi-Fi HaLow and why choose it for IoT?
iCorp Technologies Editor's Choice Telecoms, Datacoms, Wireless, IoT
Wi-Fi HaLow introduces a low power connectivity option that, in contrast to other Wi-Fi options, offers greater range of approximately 1 km, which opens up a raft of IoT use cases.

Read more...
Simple battery charger ICs for any chemistry
Altron Arrow Editor's Choice Power Electronics / Power Management
The LTC4162 is a highly integrated, high voltage multi-chemistry synchronous monolithic step-down battery charger and PowerPath manager with onboard telemetry functions and optional maximum power point tracking.

Read more...
From the editor's desk: Is the current AI really what we want?
Technews Publishing Editor's Choice
The companies that develop LLMs need to change direction and concentrate on freeing up our time, not so that we can have more time to do the tasks we don’t want to do in the first place, but rather to allow us more time to do what we love.

Read more...
When it comes to long-term reliability of RF amplifier ICs, focus first on die junction temperature
Altron Arrow Editor's Choice Telecoms, Datacoms, Wireless, IoT
When considering the long-term reliability of integrated circuits, a common misconception is that high package or die thermal resistance is problematic. However, high or low thermal resistance, by itself, tells an incomplete story.

Read more...
ICs vs modules: Understanding the technical trade-offs for IoT applications
NuVision Electronics Editor's Choice DSP, Micros & Memory
As the IoT continues to transform industries, design decisions around wireless connectivity components become increasingly complex with engineers often facing the dilemma of choosing between ICs and wireless modules for their IoT applications.

Read more...
Why bis means business for LTE Cat 1 IoT connections
NuVision Electronics Editor's Choice Telecoms, Datacoms, Wireless, IoT
Tomaž Petaros, product manager IoT EMEA at Quectel Wireless Solutions explains why the market for Cat 1bis IoT connections is getting busy.

Read more...
Interview with Brian Aziz, vice president of global sales, Iridium
Editor's Choice
ridium is the leading satellite IoT player. Their network consists of 66 active low Earth orbit satellites covering every inch of the globe and are used for IoT and emergency services worldwide.

Read more...
Accelerating AI adoption in MCU manufacturing
Editor's Choice AI & ML
To gain the value of ML functionality, designers of MCU-based devices have to adopt a new development method and accept a new type of probabilistic rather than deterministic output.

Read more...
Altron Arrow: Empowering innovation with STMicroelectronics AI processors
Altron Arrow Editor's Choice AI & ML
ST’s AI processors are not only smarter and faster, but also incredibly efficient, enabling a new wave of intelligent solutions across multiple industries.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved