Telecoms, Datacoms, Wireless, IoT


315/433 MHz low-power 3 V superhet receiver

7 November 2001 Telecoms, Datacoms, Wireless, IoT

The MAX1470 is a fully integrated low-power CMOS superheterodyne receiver for use with amplitude-shift-keyed (ASK) data in the 315/433 MHz band. This Maxim product requires few external components and is highly suited for cost and power-sensitive applications in the automotive and consumer markets. The chip consists of a 315 MHz low-noise amplifier (LNA), an image rejection mixer, a fully integrated 315 MHz phase-lock-loop (PLL), a 10,7 MHz IF limiting amplifier stage with received-signal-strength indicator (RSSI) and an ASK demodulator, and analog baseband data-recovery circuitry.

The 28-pin TSSOP packaged device operates from a single 3,0 to 3,6 V supply and also has a low-current (1,25 µA) power-down mode.

Other features are: built-in 53 dB RF image rejection; -115 dBm receive sensitivity; 5,5 mA operating current; 250 to 500 MHz operating band; selectable IF bandwidth through external filter.

The MAX1470 is a complete receive system from RF to digital data out it targets applications: remote keyless entry; remote controls; wireless sensors; wireless computer peripherals; security systems; toys; medical systems.

CST Electronics

(011) 452 0706





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Full sensor to cloud solution
CST Electronics Telecoms, Datacoms, Wireless, IoT
NeoCortec has demonstrated the seamless and rapid development of full sensor-to-cloud solutions using NeoMesh Click boards from MikroE and the IoTConnect cloud solution from Avnet.

Read more...
Long-range Wi-Fi HaLow module
TRX Electronics Telecoms, Datacoms, Wireless, IoT
One of Mouser’s newest products is the Morse Micro MM6108-MF08651-US Wi-Fi HaLow Module, which adheres to the IEEE 802.11ah standard.

Read more...
Quectel launches 3GPP NTN comms module
Quectel Wireless Solutions Telecoms, Datacoms, Wireless, IoT
Quectel Wireless Solutions has announced the Quectel BG95-S5 3GPP non-terrestrial network (NTN) satellite communication module.

Read more...
SIMCom’s A7673x series
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
SIMCom recently released the A7673X series, a Cat.1 bis module based on the ASR1606 chipset, that supports wireless communication modes of LTE-FDD, with a maximum downlink rate of 10 Mbps and a maximum uplink rate of 5 Mbps.

Read more...
Accelerating the commercialisation of the 5G IoT markets
Altron Arrow Editor's Choice Telecoms, Datacoms, Wireless, IoT
Fibocom unveils Non-Terrestrial Networks (NTN) module MA510-GL, enabling satellite and cellular connectivity to IoT applications.

Read more...
Long-range connectivity module
Avnet Silica Telecoms, Datacoms, Wireless, IoT
Digi XBee XR 868 RF Modules support the deployment of long-range connectivity applications, and support point-to-point and mesh networking protocols.

Read more...
4G LTE-M/NB-IoT connectivity reference design
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Developed around the industry-leading Nordic nRF9160 module, the platform comes complete with a newly-developed LTE antenna, ATRIA, which is pre-certified to operate over the full LTE-M and NB-IoT bands.

Read more...
Antennas to meet all connectivity requirements
Electrocomp Telecoms, Datacoms, Wireless, IoT
Kyocera AVX RF antennas meet today’s connectivity demands in the LTE, Wi-Fi, Bluetooth, GNSS, and ISM wireless bands, available in surface mount, patch or external configurations.

Read more...
Introducing SIMCom’s new A7673X series
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
SIMCom recently released the A7673X series, a Cat 1 bis module that supports LTE-FDD, with a maximum downlink rate of 10 Mbps and an uplink rate of 5 Mbps.

Read more...
18 W monolithic microwave amplifier
RFiber Solutions Telecoms, Datacoms, Wireless, IoT
The CHA8612-QDB is a two stage, high-power amplifier operating between 7,9 and 11 GHz. The monolithic microwave amplifier can typically provide 18 W of saturated output power and 40% of power-added efficiency.

Read more...