The ESP-WROOM-32 from Espressif Systems is a powerful, generic Wi-Fi / Bluetooth / BLE microcontroller module that targets a wide variety of applications ranging from low-power sensor networks to the most demanding tasks such as voice encoding, music streaming and MP3 decoding.
At the heart of this module is the ESP32 chip, which is designed to be scalable and adaptive. There are two CPU cores that can be individually controlled or powered, and the clock frequency is adjustable from 80 MHz to 240 MHz. The user may also power off the CPU and make use of the low-power co-processor to constantly monitor the peripherals for changes or crossing of thresholds. The ESP32 integrates a rich set of peripherals, including capacitive touch sensors, Hall sensors, low noise sense amplifiers, SD card interface, Ethernet, high speed SDIO/SPI, UART, I²S and I²C.
The integration of Bluetooth, Bluetooth Low Energy and Wi-Fi ensures that a wide range of applications can be targeted. The sleep current of the ESP32 chip is less than 5 μA, making it suitable for battery powered and wearable electronics. The ESP WROOM-32 module supports data rates up to 150 Mbps, and 22 dBm output power at the PA to ensure extended physical range.
Wi-Fi 6 and Bluetooth LE co-processor Altron Arrow
Telecoms, Datacoms, Wireless, IoT
STMicroelectronics has released its ST67W611M1, a low-power Wi-Fi 6 and Bluetooth LE combo co-processor module.
Read more...Improving accuracy of outdoor devices iCorp Technologies
Telecoms, Datacoms, Wireless, IoT
In a real-world environment, accessing a direct satellite signal is not always possible, and it cannot be relied upon as the only solution to provide a device with accurate location at all times.
Read more...New 3dB hybrid couplers Electrocomp
Telecoms, Datacoms, Wireless, IoT
Designed to facilitate the continued evolution of high-frequency wireless systems in various market segments, the new DB0402 3dB 90° hybrid couplers provide repeatable high-frequency performance compatible with automated assembly.
Read more...Next-level Software Defined Radio IOT Electronics
Telecoms, Datacoms, Wireless, IoT
Great Scott Gadgets has announced the HackRF Pro, a powerful evolution of its popular Software Defined Radio (SDR) platform designed for engineers and enthusiasts.
Read more...High-performance Zigbee and BLE module iCorp Technologies
Telecoms, Datacoms, Wireless, IoT
The KCMA32S from Quectel boasts an ARM Cortex-M33 processor with a frequency of up to 80 MHz, and supports Zigbee 3.0, BLE 5.3 and BLE mesh.
Read more...Championing local PCB manufacturing Master Circuits
Telecoms, Datacoms, Wireless, IoT
Master Circuits, founded in 1994 by Peter Frankish in Durban, was born from the vision to meet the growing local demand for quick-turnaround printed circuit boards in South Africa.
Read more...IoT-optimised LTE Cat 1 bis module iCorp Technologies
Telecoms, Datacoms, Wireless, IoT
Quectel’s EG915K-EU is an LTE Cat 1 bis wireless communication module specially designed for M2M and IoT applications.
Read more...Chip provides concurrent dual connectivity EBV Electrolink
Telecoms, Datacoms, Wireless, IoT
The IW693 from NXP is a 2x2 dual-band, highly integrated device that provides concurrent dual Wi-Fi 6E + Wi-Fi 6 and Bluetooth connectivity, supporting four different modes.
Read more...The 6 GHz band radio solution Altron Arrow
Telecoms, Datacoms, Wireless, IoT
Analog Devices’ 16 nm transceiver family offers a highly integrated solution for this new frequency band, featuring low power consumption and high performance.
While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.