Manufacturing / Production Technology, Hardware & Services


High-resolution infrared cameras for R&D

10 October 2018 Manufacturing / Production Technology, Hardware & Services

Whether designing or testing printed circuit board prototypes, developing new products or new product materials, or analysing laminar flow patterns on an aerodynamic design, thermal imaging plays a key role.

Analysing characteristics such as temperature, heat dissipation, latent heat and other heat-related material properties can reveal countless potential problems at an early stage in the development process to help ensure quality and avoid failures downstream. The technology has the potential to provide valuable insight into a wide range of applications, from materials analysis to component design to controlled chemical reactions.

Infrared cameras (also called thermal imagers) are ideal tools for both scientific research, and early and late stage development troubleshooting and analysis, because they collect thermal data without physically contacting the target and without interfering with the process.

Understanding what is really occurring in any situation often depends on the proper understanding and control of variables that may affect the material or device under test. Using a non-contact infrared camera to document and measure the performance or changes in thermodynamic properties of the object under test often eliminates variations that might be introduced by a contact temperature device such as an RTD or other contact temperature probe.

Furthermore, far more simultaneous data points can be collected with an infrared camera than physical sensors could ever possibly collect. These simultaneous data points combine to form a detailed, false-colour picture of the heat patterns at any point in time. This is invaluable to engineers and scientists, who understand the fundamentals of thermodynamics and heat flow, and have specific knowledge of the material or design under test.

Get the detail and accuracy you need

R&D infrared inspection and analysis covers a wide range of applications, from identifying thermal anomalies in circuit board components, to tracking phase changes in injection mould manufacturing, to analysing non-destructive testing of multilayer composites or carbon fibre components. While the specifics of those applications vary tremendously, all benefit from infrared cameras with a high degree of accuracy, excellent spatial and measurement resolution, high thermal sensitivity and responsive performance.

Fluke offers infrared cameras that provide all of these capabilities with a versatile set of features that are indispensable for many types of R&D applications. High resolution, coupled with optional macro lenses, can provide for up-close imaging capabilities that produce highly detailed and informative images, with apparent temperature calculations for each pixel.

Individual images can provide a wealth of data on their own. Capturing multiple images, or streaming radiometric data, means that the mountain of data increases exponentially. All who take on the task of research and development will therefore appreciate useable, accurate and analysable data.

Users can easily access this data from the included SmartView software and then often export it and apply their own analysis and algorithms. The extremely high thermal sensitivity of these infrared cameras, combined with their spatial resolution, allows for radiant analysis not possible with most commercially-available products. This allows for a more thorough and accurate analysis of various material properties.

When it comes to analysing printed circuit boards specifically, these thermal cameras can aid in performing the following functions:

Finding localised over-temperature issues. Design engineers have to combine heat intensive solid-state, high power transformers, high speed microprocessors, and analog-to-digital or digital-to-analog signal converters into a very small package.

Establishing cycle times. By setting the infrared camera to record thermal measurements as a solder point cools, cycle times for automated systems can be determined. Key points can be annotated with voice and text for quick review.

Analysing assembly impact. Quality review can be performed at various stages of the development and manufacturing processes to ensure that any issues are captured early to avoid costly component failures down the road.

Validating thermal modelling. Using thermal modelling software provides a good estimate of what will occur when a board is populated, but it’s still only a simulation. Designers can easily validate those results by comparing their thermal CAD model to what they’re actually getting with the camera as they populate the board and power-up components. Then the finished, powered-up prototype can be scanned and the results compared to the model to see how close it is.

Assessing collateral damage. Sometimes heat from the circuit board can affect the performance of other components in the system, such as making an LCD run too hot or interfering with mechanical operation. To avoid that one can assess how much heat dissipates from the entire package and how that heat may affect other parts of the system.

A designer can start by capturing an image of the powered-up unit with the cover on; that image shows the temperatures of all the components under power. Then the cover can be removed and a radiometric video recording performed of the temperature decay curve. A group of maximum temperature points can then be exported into spreadsheet software and used to backward-extrapolate the resulting curve to time zero, to see what the temperature of the component was before the cover was taken off.



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

What is solar I-V curve?
Comtest Multimedia, Videos
A solar I-V (current-voltage) curve is a graph that visually represents the relationship between the current and voltage produced by a solar cell or panel under specific conditions.

Read more...
Find high-quality flex and rigid-flex PCBs at PCBWay
PCBWay Manufacturing / Production Technology, Hardware & Services
[Sponsored] Flex and rigid-flex PCBs are widely used across various industries due to their unique combination of flexibility, durability, and design versatility. Among the leading providers, PCBWay stands out for its exceptional quality services.

Read more...
True-RMS clamp meter measures 2500 A
Comtest Test & Measurement
The Fluke 376 FC True-RMS Clamp Meter with iFlex is the most advanced troubleshooting tool for industrial and commercial electricians.

Read more...
The ultimate range for design and repair
RS South Africa Manufacturing / Production Technology, Hardware & Services
Whether adapting existing systems or maintaining essential equipment, design and repair play a crucial role in ensuring efficiency and longevity.

Read more...
Next-generation SPI and AOI series
Techmet Manufacturing / Production Technology, Hardware & Services
Saki Corporation has launched its next-gen series for SPI and AOI featuring a modular design for enhanced inspection efficiency and automation.

Read more...
Yamaha’s Advanced Safety Package eases factory-safety
Truth Electronic Manufacturing Manufacturing / Production Technology, Hardware & Services
Yamaha Robotics SMT Section has extended availability of the Advanced Safety Package, which contains optional features to elevate printer and mounter safety above and beyond mandatory levels.

Read more...
Case Study: Siemens Valor automation solution
ASIC Design Services Editor's Choice Manufacturing / Production Technology, Hardware & Services
Electronics manufacturer BMK used Siemens Valor to enhance accuracy and speed up bill-of-materials quotations.

Read more...
The factory beat
Electronic Industry Supplies Manufacturing / Production Technology, Hardware & Services
Change is the only constant across today’s complex manufacturing landscape. The surge of digital transformation, spearheaded by Industry 4.0, has redefined how factories operate, build, and evolve.

Read more...
Microtronix powers up 2025 with smart meter production for Eskom
Microtronix Manufacturing Manufacturing / Production Technology, Hardware & Services
Microtronix has kicked off 2025 with a significant milestone: the production of smart meters for Eskom, designed to assist customers with load reduction initiatives.

Read more...
Reliable X-ray inspection system
MyKay Tronics Manufacturing / Production Technology, Hardware & Services
Inspecting long PCBs that are often used in sectors like telecommunications, automotive, and energy, where high reliability is required, presents several unique challenges.

Read more...