Telecoms, Datacoms, Wireless, IoT


Antenna selection for wireless applications

22 May 2002 Telecoms, Datacoms, Wireless, IoT

Grintek Antennas has long been one of the leading suppliers of antennas to the local telecommunications industry and has over the years won lucrative export orders in the face of stiff international competition.

The company designs and manufactures a variety of GSM base station antennas, omni-directional and panel antennas as well as tap-off couplers for indoor GSM distribution, GSM RF amplifiers, cell extenders and dual band diplexers, a broad range of wireless LAN antennas, including patch, omni, Yagi, sector and variable gain sector antennas, and base station and subscriber antennas for DECT systems (amongst others).

Through the years we have received many questions regarding the use of different types of antennas for various applications. With this communication we present some of the most frequently used antenna types and briefly discuss some engineering applications using a beamwidth/gain table.

Figure 1. An example of some 2,4 GHz antennas
Figure 1. An example of some 2,4 GHz antennas

Antenna types

Omni-directional antennas have a 360° horizontal plane pattern and a vertical plane pattern with a beamwidth varying from typically 80° (gain 2 dBi) to 8° (gain 10 dBi). Omni antennas give continuous azimuth plane coverage, but expose the receiver system to possible undesired radiation or interference. The horizontal plane omni pattern is affected by obstructions such as masts, buildings, trees, etc.

Flat panel antennas have typical gain values ranging from 8 to 20 dBi. These antennas are usually made up of either a single radiating antenna or an array of radiating antennas. The beamwidths in the vertical and horizontal planes are usually nominally the same and typically vary from 75°x75° to around 15°x15°, depending on the area of the antenna array.

Yagi antennas can be designed to have gain values from 6 dBi (short) to 12 dBi (long) or more. The lower gain types are usually etched and compete with the low gain flat panel antennas as subscriber terminal antennas.

Sector antennas differ from patch and Yagi antennas in that they are designed to have specific horizontal plane beamwidths and usually have much smaller vertical beamwidths. This means that more energy is confined to the desired sector and less is wasted in the vertical plane. Sector antennas are ideal for applications where high gain and minimal interference are required. Variable sector antennas are ideal for in situ site optimisation or situations where the area to be covered is not known in advance. The Grintek models can be set for 90°, 120° or 180° horizontal plane coverage. Sector antennas are usually more expensive than flat panel antennas of similar gains.

Grid antennas (parabolic reflectors) have gain values typically ranging from 21 dBi to over 40 dBi. These antennas have 'pencil' beams (very narrow in both planes) and are used to cover long distances in point-to-point communication systems. These antennas are significantly bigger than the lower gain sector and panel antennas (every 3 dBi increase in gain corresponds to a doubling of the area of the panel/grid antenna or a doubling of the length of the sector/omni antenna).

Quick antenna gain calculations

Grintek has often been asked how far a specific antenna will allow the user's system to 'work'. If one knows how much power is transmitted at the one end of the link and what the receiver sensitivity (in dBm) is at the other end, the link budget can be estimated from the equation (neglecting multipath and other extraneous reflections):

This equation can be reshuffled to calculate, for instance, the required receive antenna gain, when the distance is known.

The above equation can conveniently be written in decibel form as:

PR (dBm) = PT (dBm) + GT (dBi) + GR (dBi) -20 log r (km) -20 log ƒ (MHz) - 32,44

where dBm denotes power level above a milliwatt (2 W is 10 log 2000 = 33 dBm).

A useful guide for the selection of a specific antenna is given in Table 1. This table is based on array theory and pattern integration, and lists the maximum theoretical antenna gain for various combinations of horizontal and vertical plane beamwidths. In practice, the antennas are constructed of metallic conductors, cables and microwave substrates which have inherent attenuation loss, so the gain values in the table must typically be reduced by anything from 0,5 dB for physically small (patch) antennas to 1 to 1,5 dB for larger antennas. This table can be used as a rough guide when range calculations are made. It is observed that as the gain increases, the beamwidths decrease. For very high gain antennas the pointing accuracy and tower stability in windy conditions become a serious issue.

Table 1. Theoretical maximum gain values as a function of beamwidth
Table 1. Theoretical maximum gain values as a function of beamwidth

On occasion, network planners ask for 13 dBi and higher gain omni antennas to make up the link budget. A 13 dBi omni is twice as long as a 10 dBi omni and the beamwidth is 4° rather than 8° to 10°. This means that if all the target sites do not fall in this 4° elevation window, they will be out of the main beam and receive greatly reduced signals. In the high gain omni case it is better to use sector antennas.

Grintek Antennas has extensive experience in the manufacture and practical application of telecommunications antennas. In addition to its antennas and RF products, it can offer customers support and advice regarding the implementation of antennas in its networks.

For further information about antennas and antenna requirements, contact Grintek Antennas, 012 674 3500, [email protected]





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Quectel partners with GEODNET
Quectel Wireless Solutions Telecoms, Datacoms, Wireless, IoT
Quectel Wireless Solutions has partnered with GEODNET to deliver Quectel’s Real-Time Kinematic (RTK) correction services, enabling high-precision positioning for IoT applications.

Read more...
Bringing Bluetooth Channel Sounding to automotive and beyond with KW47
Altron Arrow Telecoms, Datacoms, Wireless, IoT
NXP’s new Channel Sounding-certified KW47 and MCX W72 wireless MCUs are set to help automakers with distance measurement, bringing an additional ranging solution for car access and autonomous systems, and will be utilised across a broader spectrum of applications.

Read more...
Dual-band GNSS antenna
RF Design Telecoms, Datacoms, Wireless, IoT
The Taoglas Accura GVLB258.A, is a passive, dual-band GNSS L1/L5, high-performance antenna for high precision GNSS accuracy and fast positioning.

Read more...
What is Wi-Fi HaLow and why choose it for IoT?
iCorp Technologies Editor's Choice Telecoms, Datacoms, Wireless, IoT
Wi-Fi HaLow introduces a low power connectivity option that, in contrast to other Wi-Fi options, offers greater range of approximately 1 km, which opens up a raft of IoT use cases.

Read more...
Wi-Fi 6 and Bluetooth LE coprocessor module
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The ST67W611M1 from STMicroelectronics boasts an all-in-one design which, together with its capabilities, contribute to making it an attractive choice for IoT edge devices requiring a single-chip solution.

Read more...
Futureproofing IoT connectivity
SIMcontrol Telecoms, Datacoms, Wireless, IoT
A managed private APN assigns every device to an isolated carrier slice, producing a single ingress to the enterprise network, with traffic bypassing shared internet paths and reducing exposure.

Read more...
Extra slim 2,4 GHz radio module
Telecoms, Datacoms, Wireless, IoT
The Thyone I radio module from Würth Elektronik now has a little sibling: Thyone-e, which takes up 30% less space and represents a cost-effective alternative for applications in which the long-range mode is not required.

Read more...
Wi-Fi 6 plus Bluetooth LE SoC
Altron Arrow Telecoms, Datacoms, Wireless, IoT
Silicon Labs’ SiWx917M SoC is the company’s lowest power Wi-Fi 6 SoC, ideal for ultra-low power IoT wireless devices using Wi-Fi, Bluetooth, Matter, and IP networking for secure cloud connectivity.

Read more...
Two Bluetooth protocols – one module
Telecoms, Datacoms, Wireless, IoT
Würth Elektronik has introduced its Skoll-I, a compact wireless module that combines both Bluetooth Classic and Bluetooth Low Energy version 5.4 into a single solution.

Read more...
Compact high-performance antennas
Electrocomp Telecoms, Datacoms, Wireless, IoT
KYOCERA AVX offers a variety of extremely compact and high-performance internal, on-board, multiprotocol 2,4 GHz antennas ideal for use in SiP applications.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved