Computer/Embedded Technology

10 issues to consider before installing Ethernet - Part IV

10 September 2002 Computer/Embedded Technology

Half-duplex or full-duplex?

Full-duplex links are the key to extending the maximum network diameter of Fast (100 Mbps) Ethernet. Full-duplex requires separate receive and transmit paths (link segments consisting of no more than two devices). These devices can be Ethernet adapters or switching hub ports. Notice that we did not mention repeating hub ports. A repeating hub is part of the collision domain and reinforces collisions received on any of its other ports. A repeating hub is not capable of full-duplex operation. Although it is possible to have just two Ethernet adapters configured for full-duplex, expansion beyond two adapters requires a switching hub capable of supporting full-duplex operation.

Half-duplex means transmitting and receiving over the same medium but not at the same time. Full-duplex allows for simultaneous sending and receiving. Coaxial-based transceivers such as 10Base-5 and 10Base-2 are not able to invoke full-duplex since they do not have separate receive and transmit paths. However, 10Base-T and 10Base-FL do have separate switching hubs. If these interfaces are configured for half-duplex, then the simultaneous detection of receive and transmit activity will trigger collision detection. These same interfaces configured for full-duplex would disable this collision detection logic since full-duplex does not follow the CSMA/CD rules of shared Ethernet.

It is very important that a full-duplex link be configured properly. A station or switching hub port will send out frames at will, ignoring the CSMA/CD protocol of shared Ethernet, if it is configured for full-duplex. If the other end is configured for half-duplex, it will incorrectly detect collisions and take actions that could cause late collisions which are not automatically re-sent) and CRC errors. The result is a general slowdown of the network negating the benefits of migrating to Fast Ethernet.

As mentioned before, at 100 Mbps the maximum network diameter is short because of the limited collision domain at this speed. This is not a problem with twisted-pair link segments and switch ports because the maximum twisted-pair segment length is 100 m which is within the collision domain limit. The problem is with fibre-optic ports which allow segment lengths of 2 km for multimode operation and 15 km or greater for single-mode operation. Under the rules for half-duplex CSMA/CD Ethernet, our point-to-point fibre-optic segment is limited by the collision domain to 412 m. However, with full-duplex operation, which ignores the CSMA/CD algorithm, fibre-optic segments can be extended to their limit.

With Fast Ethernet, the use of switch technology is recommended. When using Fast Ethernet over fibre-optic cabling, full-duplex operation is recommended.


With the proliferation of Fast Ethernet and the similarity of the cabling components to conventional Ethernet, a means was proposed in IEEE 802.3u to automatically configure Fast Ethernet ports to work with either legacy Ethernet ports or other Fast Ethernet ports. This configuration protocol was based upon National Semiconductor's NWay standard. There is a way for twisted-pair links to automatically configure compatible formats in order for links to begin communicating. This scheme was intended for twisted-pair links and not coaxial buses. Coaxial cable is a legacy 10 Mbps standard that is not in the plans for evolving Ethernet. Fibre optics is a different story. Although fibre-optics is very much in the plans for evolving Ethernet, there is no simple way for two fibre-optic devices to auto-negotiate data rates since a 10Base-FL device operates at 850 nm while a 100Base-FX device operates at 1300 nm. These devices will not interoperate. However, there is nothing in the Auto Negotiation protocol to prevent two fibre-optic devices to auto-negotiate if communication is possible. Recognising this, the 100Base-SX standard was recently introduced which incorporates 850 nm fibre-optic components that can function at either 10 or 100 Mbps. At 100 Mbps, these devices are limited to 300 m segment lengths. Therefore, it is important that the installer fully understands the capabilities of the fibre-optic equipment. Frequently with fibre optics, the data rate is fixed and not negotiated. The auto-negotiation protocol functions best on twisted-pair links.

The benefit of auto-negotiation is to provide hands-free configuration of the two devices attached to the link segment. At connection time, each of the two devices will advertise all their technical abilities. These abilities have been ranked by the standard as shown in Table 1. The lowest possible ranking is 10Base-T which assumes half-duplex or shared Ethernet operation. The very next ranking is 10BaseT full-duplex indicating that full-duplex has higher performance than half-duplex. Finally, the highest ranking is 1000Base-T full-duplex. This ranking scheme has been provided for completeness. It is not assumed that a particular adapter can handle all technologies. In fact, some of these technologies may not have been commercialised. However, they are all listed consistent with the IEEE 802.3 standard.

Table 1. Auto-negotiation assumes a ranking of priorities. 10Base-T is at the bottom

1000Base-T full-duplex


100Base-T2 full-duplex

100Base-TX full-duplex




10Base-T full-duplex


Each device examines each other's technical abilities and determines the lowest common denominator. For example, if an Ethernet adapter can only handle 10Base-T while a switch port can handle either 10Base-T or 100Base-TX, 10Base-T will be chosen by both. If two Ethernet adapters connect, one only advertising 10Base-T and the other only advertising 100Base-TX, there will be no subsequent communication since no compatibility exists.

Auto-negotiation can be very helpful or it can be a source of problems especially in the area of half, full-duplex selection since it is difficult to ascertain what was selected. Usually a switching hub and adapters have indicators that will denote Fast Ethernet selection; however, there is usually no indication for half, full-duplex operation.

Part V will continue this discussion and look at the Transport Layer Protocols.

For more information: Jaap Willemse, Electronic Products Design, 012 665 9700,


Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Mini PCIe reference design for MIL-STD-1553
25 March 2020, ASIC Design Services , Computer/Embedded Technology
Holt Integrated Circuits introduced a new dual-channel development kit and complete reference design based on the popular HI-2130LBx MIL-STD-1553 fully integrated terminals. The kit includes a full-size ...

Compact fanless PC for harsh environments
25 March 2020, Brandwagon Distribution , Computer/Embedded Technology
Compulab’s Airtop3 is a ruggedised, small-form-factor fanless IoT edge server with optimised performance, features and cooling. The ruggedised aluminium case is specially designed to generate natural ...

Waterproof touchscreen keyboard console
26 February 2020, Brandwagon Distribution , Computer/Embedded Technology
The industrial IP65-rated keyboard console from Digisign features a high-performance fanless processor and a user-friendly IP65 touch monitor, making it a modern solution for industrial automation and ...

NVIDIA-powered computing for AI at the edge
26 February 2020, Altron Arrow , Computer/Embedded Technology
The AI revolution is transforming industries, reaching products that are smaller and more affordable than ever before. Many companies have been constrained by the challenges of size, power, and AI compute ...

Silicon Labs makes µC/ RTOS open source
26 February 2020, NuVision Electronics , Computer/Embedded Technology
Silicon Labs has announced a new open-source licensing model for the Micrium µC/ family of RTOS (real-time operating system) components. By adopting permissive licence terms for the µC/ components, the ...

Silicon Labs makes µC/ RTOS open source
29 January 2020, NuVision Electronics , Computer/Embedded Technology
Silicon Labs has announced a new open-source licensing model for the Micrium µC/ family of RTOS (real-time operating system) components. By adopting permissive licence terms for the µC/ components, the ...

Rugged single-board computer
25 November 2019, ETION Create , Computer/Embedded Technology
ETION Create released the 2nd in its family of 3U OpenVPX COTS modules. The VF370 3U OpenVPX single-board computer (SBC) is based on the Intel Atom E3900 series of embedded processors and Intel Cyclone ...

Signal recorder for military intelligence
25 November 2019, Rugged Interconnect Technologies , Computer/Embedded Technology
A new addition has been made to the family of Talon signal recording and playback systems from Pentek. The RTR 2654 26,5 GHz RF Sentinel intelligent signal scanning rackmount recorder combines the power ...

3-channel RGB LED lighting shield
25 November 2019, Altron Arrow , Computer/Embedded Technology
The XMC 3-channel RGB LED lighting shield from Infineon Technologies is an evaluation board compatible with Arduino as well as Infineon’s XMC1100 Boot Kit. It is designed to be easily configurable and ...

Solderless robotics kit for university education
25 November 2019, Avnet South Africa , Computer/Embedded Technology
Texas Instruments introduced the newest addition to the TI Robotics System Learning Kit (TI-RSLK) family, the TI-RSLK MAX, a low-cost robotics kit and curriculum that is simple to build, code and test. ...