Manufacturing / Production Technology, Hardware & Services


Programmable system-on-chip: the next level

26 March 2003 Manufacturing / Production Technology, Hardware & Services

Programmable logic vendors have now introduced devices with performance that rivals ASIC designs, without the cost of a $1-million mask set, or minimum volume requirements. To achieve this high-performance these devices contain a large quantity of programmable logic with embedded microprocessor cores, memory and advanced intellectual property (IP). These features provide significant benefits for the designer, such as reduced system development and the flexibility to make changes right up to production.

The devices, characterised as programmable system-on-chip (SoC) platforms, represent a dramatic technical breakthrough, but with all disruptive technologies come new design and verification challenges. These challenges require new and unique remedies.

New technology requires advanced methodology

The combination of large, complex IP blocks, hard and soft embedded processors and embedded software on a single chip, along with soaring transistor counts, tax the capabilities of traditional design methodologies. The design of these chips requires a new degree of sophistication, characterised by deeper, system-level design, concurrent hardware/software design and verification at all stages of the design process.

When hard or soft microprocessors are embedded on a programmable platform, designers face the difficult challenges associated with embedded software development. Design environments must include software compilers, software debuggers and hardware-connection probe tools that support both hard and soft processor core technologies. New system designs have multiple microprocessors on a board and the move is to multiple processors in a single device. To support these trends, software development suites must include compilers, embedded software and a debugger optimised for target processor architectures.

System-level design tools can guide system designers through hardware and software partitioning, facilitating the attachment of microprocessor cores and blocks of logic to platforms. But with modern programmable logic devices, there is a potentially huge divide between what can be put in the chip versus what can be verified to work. Bridging this gap requires the integration of many pieces of the hardware/software design and verification paradigm: software debugging, event-driven logic simulation and complex IP modelling.

Verification

As the design focus shifts from content creation to the challenges of evaluating, integrating and verifying multiple pre-existing blocks and software components, designers will have to deploy advanced verification solutions, such as co-verification. Hardware and software must be designed and verified in parallel. Programmable SoCs are so large and complex that re-designs in the future will incur even more significant delays than they already do today.

ASIC designers who use MPU cores such as ARM, MIPS and PowerPC, already employ hardware/software co-verification techniques to spot system design issues early in the development cycle. Mentor Graphics' Seamless product is the dominant tool in this sphere. Increasingly, such methodologies will be carried over into FPGA design.

Traditional simulation methods have also been enhanced to add new features that add advanced debugging capabilities, such as in the latest version of Mentor's ModelSim HDL simulator. With the increase in design sizes, bugs are becoming harder and harder to find and fix. New tools offer graphical debug capabilities help designers quickly trace design behaviour back to the source.

Synthesis

Many synthesis tools look at RTL code on a line-by-line basis and build up the design from low-level gates. With the increase in design size associated with large Programmable SoC devices, this approach becomes extremely time-consuming and does not deliver the highest quality of results. New approaches examine the intent of the RTL and build up the architecture of the design from large building blocks. This approach allows users to take full advantage of a new FPGA architecture, detecting architectural signatures and using algorithms optimised to deliver the best results.

New programmable devices have moved into the technology range where accuracy is everything. Rapid timing closure remains an ongoing goal and achieving this is strained by advanced technology developments, including 0,13-micron and below silicon technology and wire loads that consume 50-70% of circuit delay.

Small geometries and the increased role of interconnects in device behaviour require new synthesis methods. It becomes far more difficult to predict timing because the inter-connect delays are greater than the intrinsic gate delays. To solve new timing issues and guarantee a reliable design, synthesis tools must include timing engines and constraint entry systems designed to handle complex timing analysis.

Other methods for achieving timing closure include physical synthesis. Traditional physical synthesis approaches like rewriting the RTL, working with the constraints or maybe even floorplanning add value, but smarter synthesis algorithms that leverage actual physical data are required to help the designer keep pace with technology advancements and get their products to market faster. Automated algorithms such as re-timing, replication and re-synthesis add value especially when they are re-enforced with placement optimisation. After automation has done as much as possible, an interactive environment allows the user to close on those last few signals. This is the approach used by Mentor Graphics' Precision RTL synthesis tool.

Every chip goes onto a board

To complete a programmable platform system design requires chip and board design to be conducted in parallel. Concurrent design enables system engineers to synchronise the FPGA with the board, minimising inter-connectivity delay and accelerating system timing closure. Parallel design of the FPGA and the board allows designers to create faster, denser boards and to simulate the whole system. In many cases the programmable device will be used alongside standard microprocessors and DSPs. Models for these processors are also available in Mentor Graphics' Seamless product, which enables designers to use the same tool for both device and system level co-verification.

Innovation ahead

Market dynamics are changing as consumerisation squeezes project lifecycles down to months rather than years. With shorter product cycles, the flexibility of programmable logic is extremely advantageous. As FPGAs support limited but widespread products and platforms, design efforts will be more focused. Programmable SoC invites innovation: it puts complex silicon in the hands of most designers for the first time and it makes available unprecedented system design methodologies.

Innovation - driven by the large user base - will occur rapidly. Therefore, programmable technology will mature at a faster pace than ASICs. Consequently, programmable SoC and its supporting tools will develop quickly. Historically, it took more than ten years to put the tools in place for the typical ASIC design flow; adoption of those same tools for FPGA applications is happening much faster. Early ASIC applications have pipe-cleaned the tool flow for hardware/software design and verification, enabling EDA developers to rapidly deploy robust, proven tool flows for designing complex programmable SoC devices.

For more information contact Kobus van Rooyen, ASIC Design Services, 011 315 8316, [email protected]



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

The impact of ML in robotics
Yaskawa Southern Africa Manufacturing / Production Technology, Hardware & Services
The integration of machine learning into robotics has the potential to revolutionise many industries, and particularly the manufacturing sector.

Read more...
ITW EAE wins product introduction award
Allan McKinnon & Associates Manufacturing / Production Technology, Hardware & Services
ITW EAE has earned a 2024 New Product Introduction (NPI) Award for Electrovert’s Deep Wave option for wave soldering machines.

Read more...
PolarFire SoC Discovery Kit
ASIC Design Services DSP, Micros & Memory
By offering a user-friendly, feature-rich development kit for embedded processing and compute acceleration, Microchip is making emerging technology more accessible to engineers at all levels.

Read more...
Revolutionising clean air in electronics manufacturing
Allan McKinnon & Associates Manufacturing / Production Technology, Hardware & Services
Designed to prioritise clean air in the electronics manufacturing industry, the ZeroSmog Shield Pro sets a new standard for workplace health and safety.

Read more...
High-speed multi-function dispensing
Techmet Manufacturing / Production Technology, Hardware & Services
The D-VIS and DL-VIS from GKG SMT printer specialists are high-speed dispensing systems that can handle multiple scenarios.

Read more...
Optical inspection for SMT
Techmet Manufacturing / Production Technology, Hardware & Services
The Xpection 1860 from Scienscope is a versatile X-ray inspection machine that offers comprehensive circuit board defect detection and quality assurance for the SMT industry.

Read more...
Yamaha introduces upgrades to its 3D AOI systems
Truth Electronic Manufacturing Manufacturing / Production Technology, Hardware & Services
Yamaha Robotics SMT section has revealed performance-boosting upgrades for the YRi-V 3D AOI system, including faster board handling, multi-component alignment checking, and enhanced LED coplanarity measurement.

Read more...
Flexible printed electronics substrates
Manufacturing / Production Technology, Hardware & Services
New LEXAN CXT film from SABIC offers high thermal process stability and transparency for demanding printed electronics substrates.

Read more...
Lead-free solder paste
Techmet Manufacturing / Production Technology, Hardware & Services
Indium8.9HF is an air reflow, no-clean solder paste specifically formulated to accommodate the higher processing temperatures required by SnAgCu, SnAg, and other alloys.

Read more...
Analog Devices and Mouser collaborate on eBook
Manufacturing / Production Technology, Hardware & Services
Mouser has released a new eBook in collaboration with Analog Devices, that offers a detailed analysis of the technologies being used to support sustainable manufacturing practices.

Read more...