Telecoms, Datacoms, Wireless, IoT


The basics of RF LNA testing

28 July 2021 Telecoms, Datacoms, Wireless, IoT

To ensure an LNA design or device performs as designed, there are several ways of evaluating these circuits. Mainly, these measurements are to produce S-parameters, gain, noise figure and linearity figures for a given device.

Low-noise amplifiers (LNAs) are a critical component for telecommunication and sensing systems, as the weak received signals often need to be at a higher signal level for optimal demodulation, digitisation, driving another circuit, or for measurements to be made.


Pasternack’s PE15A1000 is a 1-2 GHz LNA with 35 dB gain and SMA connectors.

LNAs are also used throughout signal chains to add gain to low-power signals when higher-power signals are needed at the input of other elements within the signal chain. This includes amplifying received signals from an antenna or sensor, or increasing the signal power level from local oscillators (LOs) or other frequency generation/drive circuits where it is necessary to ensure that minimal added noise is contributed.

The main purpose of an LNA is to add gain without adding noise, phase noise or distortion. Generally, LNAs are placed as close as possible to the input signal to minimise exposure of the circuit to noise prior to amplification, as any signal content within the bandwidth of an LNA is amplified. To ensure an LNA design or device performs as designed, there are several ways of evaluating these circuits. Mainly, these measurements are to produce S-parameters, gain, noise figure and linearity figures for a given device.

LNA S-parameter measurements and gain

S-parameter measurements can be made with an LNA that is properly supplied and biased using a vector network analyser (VNA), as LNAs are typically 2-port devices. Hence, only S11, S12, S22 and S21 parameters need to be measured. It is important to note that the S-parameters measured here are generally small-signal parameters, not large-signal parameters, which may be beneficial to measure when characterising LNAs with high gain and relatively high power levels as the load may impact the LNA’s performance substantially.

For low-power LNAs, a VNA measuring the S-parameters may be adequate to provide the gain (S21) if port 1 is the input and port 2 is the output. For higher-power LNAs, a signal generator driving the input port and either a power meter or spectrum analyser measuring the amplified input signal at the output can be used to determine the gain.

LNA linearity measurements

The linearity of an LNA is important to measure, as often the power delivered to receiver circuitry needs to be precisely controlled. The 1 dB compression point (P1dB) can be determined by varying the input power at a given frequency. It can be observed from plotting these measurements that at some point the power in compared to the power out relationship is no longer linear. The P1dB is when the gain (output) deviates by 1 dB from what it would otherwise be if the relationship remained linear.

The other linearity measurement commonly performed on LNAs is the third-order intercept used as a gauge of the intermodulation products produced by an LNA. This is measured by inputting two distinct frequencies at the same amplitude and measuring the input power compared to the third-order intermodulation product produced by the mixing of those two tones (2F1-F2 and 2F2-F1). This measurement is typically performed with a designated frequency spacing between the two tones to provide some point of comparison between LNAs.

LNA noise measurements

Most importantly, an LNA is often chosen for the device’s added noise performance, or noise figure (NF). This is a measure of how much noise an LNA adds to the signal passing through it. This measurement is typically done with a noise figure meter or noise figure analyser, and an RF signal generator. The test system is often calibrated using a calibrated noise source, to remove the uncertainty from the measurement setup and to isolate the noise response of the device under test (DUT). NF is most commonly given in terms of decibels.

Other LNA features of note are:

• Gain flatness.

• Saturation power.

• Port impedance.

• Operating temperature.

• Stability.

• Supply and biasing.

• Electronic and environmental survivability/performance.

• Input and output voltage standing wave ratio (VSWR).


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Full sensor to cloud solution
CST Electronics Telecoms, Datacoms, Wireless, IoT
NeoCortec has demonstrated the seamless and rapid development of full sensor-to-cloud solutions using NeoMesh Click boards from MikroE and the IoTConnect cloud solution from Avnet.

Read more...
Long-range Wi-Fi HaLow module
TRX Electronics Telecoms, Datacoms, Wireless, IoT
One of Mouser’s newest products is the Morse Micro MM6108-MF08651-US Wi-Fi HaLow Module, which adheres to the IEEE 802.11ah standard.

Read more...
Quectel launches 3GPP NTN comms module
Quectel Wireless Solutions Telecoms, Datacoms, Wireless, IoT
Quectel Wireless Solutions has announced the Quectel BG95-S5 3GPP non-terrestrial network (NTN) satellite communication module.

Read more...
SIMCom’s A7673x series
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
SIMCom recently released the A7673X series, a Cat.1 bis module based on the ASR1606 chipset, that supports wireless communication modes of LTE-FDD, with a maximum downlink rate of 10 Mbps and a maximum uplink rate of 5 Mbps.

Read more...
Accelerating the commercialisation of the 5G IoT markets
Altron Arrow Editor's Choice Telecoms, Datacoms, Wireless, IoT
Fibocom unveils Non-Terrestrial Networks (NTN) module MA510-GL, enabling satellite and cellular connectivity to IoT applications.

Read more...
SiP supports LTE/NB-IoT and GNSS
RF Design DSP, Micros & Memory
The nRF9151 from Nordic Semiconductor is an integrated System-in-Package that supports LTE-M/NB-IoT, DECT NR+ and GNSS services.

Read more...
Long-range connectivity module
Avnet Silica Telecoms, Datacoms, Wireless, IoT
Digi XBee XR 868 RF Modules support the deployment of long-range connectivity applications, and support point-to-point and mesh networking protocols.

Read more...
4G LTE-M/NB-IoT connectivity reference design
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Developed around the industry-leading Nordic nRF9160 module, the platform comes complete with a newly-developed LTE antenna, ATRIA, which is pre-certified to operate over the full LTE-M and NB-IoT bands.

Read more...
Antennas to meet all connectivity requirements
Electrocomp Telecoms, Datacoms, Wireless, IoT
Kyocera AVX RF antennas meet today’s connectivity demands in the LTE, Wi-Fi, Bluetooth, GNSS, and ISM wireless bands, available in surface mount, patch or external configurations.

Read more...
Introducing SIMCom’s new A7673X series
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
SIMCom recently released the A7673X series, a Cat 1 bis module that supports LTE-FDD, with a maximum downlink rate of 10 Mbps and an uplink rate of 5 Mbps.

Read more...