Power Electronics / Power Management


Rugged silicon carbide power devices

25 August 2021 Power Electronics / Power Management

Today’s energy-efficient electric charging systems powering commercial vehicle propulsion, as well as auxiliary power systems, solar inverters, solid-state transformers and other transportation and industrial applications, all rely on high-voltage switching power devices. To meet these requirements, Microchip Technology has expanded its silicon carbide (SiC) portfolio with a family of high-efficiency, high-reliability 1700 V silicon carbide MOSFET die, discrete and power modules.

Microchip’s 1700 V silicon carbide technology is an alternative to silicon IGBTs. The earlier technology required designers to compromise performance and use complicated topologies due to restrictions on switching frequency by lossy silicon IGBTs. In addition, the size and weight of power electronic systems are bloated by transformers, which can only be reduced in size by increasing switching frequency.

The new silicon carbide product family allows engineers to move beyond IGBTs, instead using two-level topologies with reduced part count, greater efficiency and simpler control schemes. Without switching limitations, power conversion units can be significantly reduced in size and weight, freeing up space for more charging stations, additional room for paying passengers and cargo, or extending the range and operating time of heavy vehicles, electric buses and other battery-powered commercial vehicles – all at reduced overall system cost.

Features include gate oxide stability, where Microchip observed no shift in threshold voltage even after an extended 100 000 pulses in repetitive unclamped inductive switching (R-UIS) tests. R-UIS tests also showed excellent avalanche ruggedness and parametric stability and with gate oxide stability, demonstrated reliable operation over the life of the system.

The degradation-free body diode can eliminate the need to use an external diode with the silicon carbide MOSFET. A short-circuit withstand capability comparable to IGBTs survives harmful electrical transients. A flatter RDS(on) curve over junction temperature from 0°C to 175°C enables the power system to operate at greater stability than other silicon carbide MOSFETs that exhibit more sensitivity to temperature.

Microchip streamlines the adoption of its technology with a family of AgileSwitch digital programmable gate drivers and a wide range of discrete and power module packaging, available in standard and customisable formats. These gate drivers help speed silicon carbide development from benchtop to production.

Silicon carbide SPICE simulation models compatible with Microchip’s MPLAB Mindi analog simulator provide system developers with resources to simulate switching characteristics before committing to hardware design. The Intelligent Configuration Tool (ICT) enables designers to model efficient silicon carbide gate driver settings for Microchip’s AgileSwitch family of digital programmable gate drivers.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

The importance of power integrity
Spectrum Concepts Power Electronics / Power Management
[Sponsored] Behind every high-speed system lies the need for power integrity. Without it, even the cleanest signal paths become compromised.

Read more...
Precise multi-vital sign monitoring
Future Electronics Power Electronics / Power Management
The AS7058 by ams OSRAM is an integrated multi-vital sign monitoring device, which provides a complete photoplethysmogram, electrocardiogram, body impedance sensor, and electrodermal activity sensor.

Read more...
Automotive battery diagnostics tester
Comtest Power Electronics / Power Management
Midtronics’ MVT handheld battery tester is a revolutionary tool, powered by MDX-AI, which is set to redefine the standards of battery diagnostics and testing in the automotive industry.

Read more...
Advanced 3-phase controllers
Future Electronics Power Electronics / Power Management
The STSPIN32G0 by STMicroelectronics is a family of highly integrated system-in-package providing solution suitable for driving three-phase brushless motors.

Read more...
Converting high voltages without a transformer
Altron Arrow Editor's Choice Power Electronics / Power Management
With appropriate power converter ICs, such as the LTC7897 from Analog Devices, many applications can be suitably powered without having to use complex and cost-intensive transformers.

Read more...
Reliable power for demanding applications
Conical Technologies Power Electronics / Power Management
The Mibbo Power MTR480 three-phase DIN-rail power supply is engineered to meet stringent industrial automation requirements, offering dependable performance in environments where downtime is not an option.

Read more...
Versatile range of camera modules
EBV Electrolink Opto-Electronics
The CAM-66GY pro-modules from ST are a full range of sample camera modules made for a seamless evaluation and integration of the VD66GY 1,5-megapixel colour image sensor.

Read more...
Elevate your motor control designs
EBV Electrolink DSP, Micros & Memory
Built on an Arm Cortex-M33 core running up to 180 MHz, the MCX A34 family combines high-performance math acceleration and advanced motor control subsystems to unlock efficient motor drive solutions.

Read more...
Powering performance and precision
Future Electronics Power Electronics / Power Management
onsemi’s innovative T10 series MOSFETs, available in 40 V and 80 V versions, are designed for high-efficiency, fast-switching, and power-dense applications.

Read more...
Programmable flyback switcher ICs
Future Electronics Power Electronics / Power Management
Power Integrations has announced the release of the InnoSwitch5-Pro family of programmable flyback switcher ICs, which offer more than 95% efficiency in streamlined AC-DC converter designs.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved