Telecoms, Datacoms, Wireless, IoT


The basics of MIMO versus SISO antenna technologies

25 August 2021 Telecoms, Datacoms, Wireless, IoT

Though the terms single-input single-output (SISO) and multi-input multi-output (MIMO) originate with controls engineering, SISO and MIMO are now very commonly discussed in reference to RF antennas.

In controls engineering, a SISO system has only one input and one output, such as a DUT (device under test) with only two ports that you can measure with a 2-port vector network analyser (VNA) to acquire the 2 x 2 matrix of S-parameters (S11, S12, S21, S22). MIMO in controls engineering refers to a system with multiple inputs and multiple outputs of any number or combination. MIMO systems with n inputs and m outputs will ultimately have a channel matrix of the order n x m.

In RF engineering, when discussing antennas, SISO and MIMO now apply to the number of antenna inputs and antenna outputs that a communication channel between two or more devices may have. In this case, a SISO RF system will only have a singular antenna from one device communicating with a singular antenna from another device. Unlike in control engineering, the number of inputs and outputs isn’t a reference to the inputs and outputs of the communication system, but instead discusses the antennas that are part of a spatial multiplexing scheme. With MIMO RF antennas, the number of transmitting antennas from one device and receiving antennas from another device dictate the order of the MIMO channel (TX antennas x RX antennas).

With a SISO antenna system, the signals transmitted from one device will interact with the environment and will be absorbed or reflected depending on these environmental variables. Ultimately, the signal energy transmitted from the SISO antenna system may arrive at the receiving antenna from one or more spatial paths. In this case, the path with the highest signal energy is most desirable as it is usually the least attenuated or distorted. Signals from other paths may actually act as interference, as they may have been degraded or delayed by their interaction with the environment.

With MIMO systems, these multiple spatial paths from one device to another are used to enhance communication between the two devices, either increasing the number of effective streams being used or to enhance the reliability of the communication channel. Either method may result in increased throughput, either by adding channels or by enhancing the channel quality, reducing errors and resulting in more efficient use of the channel capacity.

A communications link can be enhanced by using space time transmit diversity (STTD) to send multiple signal copies with different encoding through the multiple spatial channels to the receiver. This method enhances the signal-to-noise ratio (SNR) of the signal, which means fewer bit-errors and a higher throughput to the limit of the communication link. Generally, this approach will reach a point of diminishing returns with the number of antennas used, which leaves a practical limit.

The other method is to use each of the spatially diverse paths (spatial division multiplexing) to simultaneously send a different signal to another device, which results in additional communication streams. On the receive side, these parallel streams can be separated into multiple channels, which effectively multiplies the throughput under favourable conditions.

It is possible for a MIMO system to be designed to take advantage of either method, depending on the best outcome for the communication link. For this to be possible, the MIMO system needs a method of determining the qualities of the air interface and spatial diversity options and deciding how best to optimise the link.

This system can be augmented if beamforming/beamsteering technology is used in conjunction with MIMO technology. With beamforming/beamsteering, the antenna pattern can be modified to better match the spatial paths from device to device, enhancing the gain and ensuring the best outcome for the MIMO link. In these ways a MIMO link may outperform a SISO link in terms of throughput and even signal reliability under certain conditions.

However, MIMO systems require additional RF hardware, signal paths, antennas and analog/digital signal processing hardware. Under certain conditions, a single optimised antenna may be higher-performing than a MIMO system due to antenna performance, as MIMO systems are often designed with antennas that are better suited to being manufactured in a matrix, such as patch antennas and may be inferior to a SISO antenna in the same form factor.

However, one of the main use cases for MIMO technology is to support cellular or IoT communication from a single base station or router to multiple user devices. With a sufficiently complex MIMO base station, hundreds of user devices may be served simultaneously, which would otherwise be a complex or impossible task for a SISO system if a high enough throughput and reliability are desired.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

The trends driving uptake of IoT Platform as a Service
Trinity IoT Editor's Choice Telecoms, Datacoms, Wireless, IoT
IoT platforms, delivered as a service, are the key that will enable enterprises to leverage a number of growing trends within the IT space, and access a range of benefits that will help them grow their businesses.

Read more...
RF power amplifier
RF Design Telecoms, Datacoms, Wireless, IoT
The ZHL-20M2G7025X+ from Mini-Circuits is a 32 W power amplifier that operates from 20 to 2700 MHz and delivers a saturated output power of +45 dBm.

Read more...
Introducing the Quectel EG800Z series
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
The EG800Z series is Quectel’s latest ultra-compact LTE Cat 1 bis module, designed to deliver reliable connectivity, low power consumption, and robust performance across a wide range of IoT applications.

Read more...
NeoMesh on LoRa
CST Electronics Telecoms, Datacoms, Wireless, IoT
Thomas Steen Halkier, CEO of NeoCortec, recently gave a keynote speech where he spoke about “NeoMesh on LoRa: Bringing true mesh networking to the LoRa PHY”.

Read more...
Modules upgraded with Direct-to-Cell tech
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Quectel Wireless Solutions has announced that several of its LTE modules are now available with Direct-to-Cell (D2C) functionality, enabling devices to seamlessly connect to satellite networks.

Read more...
USB/Ethernet smart RF power sensor
RF Design Telecoms, Datacoms, Wireless, IoT
The PWR-18PWHS-RC from Mini-Circuits is an RF power sensor that operates from 50 MHz to 18 GHz and is designed to capture pulsed and trace modulated signals with very high data resolution.

Read more...
Tiny Bluetooth LE + 802.15 + NFC module
RF Design Telecoms, Datacoms, Wireless, IoT
Unleashing enhanced processing power, expanded memory, and innovative peripherals, the BL54L15µ from Ezurio is the ultimate choice for small and low power connectivity.

Read more...
Trasna and RF Design announce distribution agreement
RF Design News
Trasna and RF Design have announced a strategic distribution agreement for cellular IoT solutions which will ensure seamless availability of Trasna’s cellular connectivity solutions.

Read more...
AI modules for edge intelligence
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
SIMCom has introduced two new entry-level AI computing modules, the SIM8668 and SIM8666, designed to bring intelligent capabilities to lightweight, energy-efficient edge devices.

Read more...
High performance ISM antennas
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Quectel Wireless Solutions has announced the launch of two new high performance ISM antennas, designed to meet the need for wireless communication in devices that operate in the industrial and commercial applications.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved