Analogue, Mixed Signal, LSI


How sensor fusion is driving vehicle autonomy forward

26 October 2022 Analogue, Mixed Signal, LSI

From reading road signs to keeping you inside lane markers, artificial-intelligence-assisted cameras are already making our vehicles smarter and safer. But what happens when the fog rolls in and your camera’s vision is as compromised as yours?

“A camera might be great for object recognition, but it’s not so good in bad weather or at night,” said Miro Adzan, general manager of advanced driver assistance systems (ADAS) at TI. “However, radar will continue to work in rain, snow or mist. Driver assistance systems need to incorporate a range of different sensors so the vehicle can take full advantage of the benefits of these different technologies.”

Using the strengths of different types of sensors is not just a matter of switching between them for different conditions or applications. Even in clear weather, a camera will be stronger for object details, but radar will measure an object’s distance more accurately.

As these systems extend to critical and time-sensitive applications such as emergency braking, automatic parking, front-collision warning and avoidance, and blind spot detection, design engineers will need to fuse these different information sources into a single picture to deliver reliable real-time decisions.

“For automatic parking, you need to combine data from cameras, radar and sometimes ultrasound to give the vehicle an accurate sense of what’s going on around you,” said Curt Moore, general manager for Jacinto processors at TI. “None of these sensors would be accurate enough on their own, but by combining them, you can get a much more accurate picture of the space around you. This allows you to park in much tighter spaces without the risk of causing damage.”

Advanced safety systems are no longer reserved only for high-end automobiles. Nearly 93% of vehicles produced in the US come with at least one ADAS feature, and automatic emergency braking is set to become standard across 99% of new cars in the United States by September.

The shift is a result of the decreasing cost and size of sensors, such as TI mmWave radar sensors which integrate an entire radar system into a chip the size of a coin.

“Ten years ago, radar was predominantly used in military applications because of size, cost and complexity,” Adzan said. “But today, radar is on the verge of becoming a standard component in the car.”

While the proliferation of affordable sensors opens up new applications, it also creates new challenges for ADAS engineers who need to design systems that bring together all the data streams and process them efficiently, while meeting tight affordability and power constraints.

In a single-sensor ADAS system, pre-processing data for object detection takes place close to the sensor in order to use that information immediately. But sensor fusion requires that raw, high-resolution data be instantly transmitted to a central unit for processing to form a single, accurate model of the environment that will help the vehicle avoid a collision.

“With all the data coming in from these sensor nodes, the challenge is making sure all of it is synchronised so the vehicle can understand what’s happening around you and make critical decisions,” said Heather Babcock, general manager for FPD-Link products at TI. “In order to transmit synchronised data in real time, it’s important to have high-bandwidth, uncompressed transmission capability because compressing data introduces latencies.”

The physical constraints of an automobile place tight limits on the size and weight of batteries and cooling infrastructure, so ADAS engineers need processors specifically designed to perform these tasks as efficiently as possible.

The Jacinto processors combine dedicated DSP and matrix multiplication cores that operate with the lowest available power, even at temperatures of up to 125°C.

“There are tremendous advantages in integrating the DSP and the processor into one system on a chip,” Moore said. “Otherwise, each will need its own memory and power supply, driving up the system cost. The other advantage is the reduction in latency gained by integrating these operations into one chip.”

In addition to power-efficient processors, TI’s automotive-qualified power management ICs with functional safety features for sensor fusion, front cameras and domain controllers improve overall power efficiency and functionality within the vehicle.

Beyond the individual components, TI’s entire ecosystem of ADAS products is created for seamless compatibility, allowing car manufacturers to select from a holistic portfolio that can be scaled to the demands and price points of their vehicles.

“We have all the pieces of the ADAS puzzle designed in a way that keeps the various challenges of the vehicle in mind,” Adzan said. “That makes the system design easier for our customers.”


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Wi-Fi 6/BLE module enables rapid development
Altron Arrow Telecoms, Datacoms, Wireless, IoT
Telit Cinterion has announced the WE310K6, a fully integrated, low-power module featuring dual-band, dual-stream Wi-Fi 6, and dual-mode Bluetooth/BLE.

Read more...
Analysis of switch-mode power supply: inductor violations
Altron Arrow Editor's Choice Power Electronics / Power Management
Common switch-mode power supply (SMPS) design errors are discussed, and their appropriate rectification is specified, with details on complications that arise with the power stage design of DC-DC switching regulators.

Read more...
Microsoft Windows IoT on ARM
Altron Arrow Computer/Embedded Technology
This expansion means that the Windows IoT ecosystem can now harness the power of ARM processors, known for their energy efficiency and versatility.

Read more...
Accelerating the commercialisation of the 5G IoT markets
Altron Arrow Editor's Choice Telecoms, Datacoms, Wireless, IoT
Fibocom unveils Non-Terrestrial Networks (NTN) module MA510-GL, enabling satellite and cellular connectivity to IoT applications.

Read more...
Microchip introduces ECC608 TrustMANAGER
Altron Arrow Circuit & System Protection
To increase security on IoT products and facilitate easier setup and management, Microchip Technology has added the ECC608 TrustMANAGER with Kudelski IoT keySTREAM, Software as a Service (SaaS) to its Trust Platform portfolio of devices, services and tools.

Read more...
xG26 sets new standard in multiprotocol wireless device performance
Altron Arrow AI & ML
Silicon Labs has announced its new xG26 family of Wireless SoCs and MCUs, which consists of the multiprotocol MG26 SoC, the Bluetooth LE BG26 SoC, and the PG26 MCU.

Read more...
SolidRun unveils new SoM
Altron Arrow AI & ML
SolidRun and Hailo has unveiled a game-changer for engineers and AI product developers with the launch of their market-ready SoM, which packs the cutting-edge capabilities of the Hailo-15H SoC.

Read more...
An evolutionary step in customisable logic
Altron Arrow DSP, Micros & Memory
Microchip Technology is offering a tailored hardware solution with the launch of its PIC16F13145 family of microcontrollers, which are outfitted with a new Configurable Logic Block module.

Read more...
MCU for battery-powered applications
Altron Arrow DSP, Micros & Memory
Included in ST’s family of devices is the STM32U031, an ultra-low-power MCU featuring an ARM Cortex-M0+ 32-bit core running at up to 56 MHz.

Read more...
LoRaWAN-certified sub-GHz module
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The STM32WL5M from ST Microelectronics is the company’s first LoRaWAN-certified module which incorporates two cores, one of them being a wireless stack to optimise the creation of sub-GHz applications.

Read more...