DSP, Micros & Memory


Securing the industrial IoT: trusted solutions for embedded platforms

26 October 2022 DSP, Micros & Memory

Industrial IoT (IIoT) is transforming the way industries operate. At its core, data is acquired, analysed and turned into actionable insights to solve problems for faster decision-making. But IIoT devices and infrastructure can become high-value cyber targets – a compromise could lead to financial, safety and even environmental threats. At NXP, we believe that security must be considered from the start of a design to achieve optimal protection. That’s why we are relentlessly focused on our security engineering expertise, proven processes and understanding of emerging trends, to deliver trusted solutions that meet your security needs.

The shift to digitalisation across industries is spurring new applications, from driverless transport and smart handling systems to autonomous robots that operate without human intervention. IIoT technologies are being deployed across power and energy, factories, buildings and healthcare industries. These interconnected devices – the industrial ‘Things’ – include actuators, sensor nodes, servo drives, vision systems and programmable logic controllers. Together, they form industrial communication networks that enable devices to share vast amounts of data.

Some devices sense, analyse, acquire and communicate with automation control systems in real-time, such as edge devices with on-chip computational and machine learning capabilities that enable them to make immediate decisions. Some actuators directly influence the industrial process by operating a switch or a valve and gathering its data. These edge devices have computational capabilities that can directly impact a process without the need for data to propagate through the entire system.

Other edge devices gather and pass data to a centralised hub that processes and consolidates this data and sends the information to the cloud. This information can then be analysed and processed by cloud-based applications, and fed back to enhance production.

Greater energy efficiency, reduced costs, better quality products, improved decision-making and less equipment downtime are some of the advantages of an effective IIoT system. It’s no surprise that digitalisation is expanding in all sectors, with the potential for interconnection between multiple organisations in a supply chain.

Attack points

The convergence of IT and OT (operational technology) can increase the potential attack surface of nearly every level within the infrastructure, from enterprise resource planning (ERP) to the factory shop floor. For example, an organisation could have access to a supplier’s computer system for visibility into logistics and supply. Because a significant number of interconnected devices and systems are involved, the attack surface grows and can serve as an entry point into financial and process management systems, and even cloud-based systems. Criminal actors are increasingly resourceful in determining the weakest link in a system and using it to bootstrap an attack on the entire network of interconnected devices.

Legacy devices

Industrial facilities that were established before malicious attacks became as prevalent as they are today may feature an industrial IoT system that has evolved, with devices varying in age and security levels coexisting within the same network. In some cases, the manufacturer may have closed, leaving a void in support before the product reaches the end of its lifecycle.

Additionally, a legacy product may not have the processing power or sufficient memory to handle over-the-air or technician-implemented updates, yet the systems they control may be too costly or disruptive to replace. A personal computer or an IoT platform within an OT system may be running a legacy operating system, making effective malware eradication more complex, particularly when securing such a system from evolving threats. Production line downtime costs are an additional consideration and can account for a reluctance to carry out such upgrades.

Industry fights back

The EU Cybersecurity Act, which came into force in June 2019, aims to establish a European Cybersecurity Certification framework for all OT products and services. Its scope includes EU cyber deterrence, law enhancements, identification of perpetrators, international cooperation and a diplomatic, political response. The European Agency for Cybersecurity, ENISA, participates in this new framework, establishing the link between standardisation and certification.

In the United States, similar initiatives are in place with the National Industrial Security Program (NISP). Additionally, the Strengthening American Cybersecurity Act of 2022 (SACA) was signed into law in March 2022. It requires critical infrastructure operators to report “substantial cyber incidents” to the Cybersecurity and Infrastructure Security Agency (CISA) within 72 hours and report ransomware payments within 24 hours.

IEC 62243: A path to compliance

IEC 62443 is a series of international standards that address cybersecurity for operational technology in industrial automation and control systems (IACS). An industrial expert panel, including NXP security experts, worked to develop the series, which is divided into sections to encompass both procedural and technical requirements from the device level to the IACS level.

The standards provide a framework for all aspects of security as early as possible. This prevents confusion arising from the use of a myriad sector-specific standards, and creates a unified, interoperable approach to security.

The standards are organised into four parts:

• Part 1 pertains to the terminology and methodology used.

• Part 2 looks at the methods and security processes for different roles such as industrial facilities.

• Part 3 discusses cybersecurity technical requirements for systems. The target audience is system integrators.

• Part 4 is about the integration of cybersecurity in all the phases of a product life cycle and specifies the technical requirements for components themselves, such as embedded devices.

NXP’s security-by-design approach to ease 62443 compliance

At its core, NXP has extensive security expertise and addresses the security demands of its products by leveraging its heritage in highly advanced secure elements for smartcards, government e-passports and automotive applications. The company rigorously tests its sites, systems and processes. In addition to ensuring the integrity of its secure components, NXP has a security-conscious culture within its organisation, making security part of its DNA.

Because every use case is different, the security should be as well. That’s why at NXP, a broad EdgeVerse product portfolio for a wide range of use cases and protection is offered. Depending on the application, one can choose from SoCs with integrated security capabilities, ready-to-use secure elements or a combination of both.

MCUs and processors with integrated security

NXP addresses secure IIoT requirements with its EdgeVerse processing platform, a range of microcontrollers and processors that deliver power and performance scalability, rich mixed-signal and security integration, as well as system-level solutions and software enablement to ease embedded development.

Security is at the forefront when developing the latest Arm Cortex-M based microcontrollers, such as the recently launched LPC5500 MCU series, which integrates a range of benchmark security features, including secure boot with immutable hardware root-of-trust, SRAM PUF-based unique key storage, and certificate-based secure debug authentication. Cryptography acceleration is further enhanced within LPC5500 for faster key exchange with dedicated accelerators for AES-256 and SHA2-256, as well as asymmetric algorithms, such as ECC and RSA for public key infrastructure.

Offering protection and isolation, NXP has integrated an EdgeLock secure enclave into some of NXP’s latest i.MX applications processors and i.MX RT crossover MCUs. This preconfigured, self-managed and autonomous on-die security system provides a rich set of security services and platform security functions which it manages independently without impacting the function of the processor or controller.

NXP’s i.MX RT1180, a purpose-built crossover MCU for industrial edge applications, is the first from NXP to include a secure enclave, as well as a 5 Gbps cut-through ethernet switch with multi-protocol support for both time-sensitive networking and real-time industrial ethernet. Additionally, by mapping system-level industrial security requirements into NXP’s target SESIP component certification, i.MX RT1180 will ease the effort required by OEMs to comply with IEC 62443 standards.

Conclusion

The IIoT offers enormous efficiency and cost benefits for all industrial sectors, whether in power generation, transportation or smart city infrastructure. To this end, the number of electronic devices that communicate is expanding in both proliferation and complexity, across all sectors. This increased deployment broadens the risk footprint and increases the likelihood of cyberattacks.

Robust cybersecurity measures must be intrinsic to all industrial IoT designs to avoid potential catastrophes. Securing such systems from malicious attacks requires careful planning to embed security by design. An IIoT system that features a carefully planned scalable architecture built using secure products, while considering the convergence of OT and IT systems within it, will be better equipped to withstand cyberattacks from evolving threats than one that has grown ad hoc with scant regard to its architecture or connections.

Cybersecurity regulations, standards and frameworks all serve to address an increasing threat spectrum, guide sectors in best practices and assist organisations in creating their cybersecurity management systems. NXP, with its successful history in security, will play an essential role in securing the future.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Adaptive optics’ power solution
Altron Arrow Opto-Electronics
Vicor power-dense adaptive optical modules enable colossal telescopes to look into the past for deep space discoveries.

Read more...
MCU for low-power, IoT applications
NuVision Electronics DSP, Micros & Memory
Silicon Labs recently announced the PG26, a general-purpose microcontroller with a dedicated matrix vector processor to enhance AI/ML hardware accelerator speeds.

Read more...
Wide input voltage buck-boost converter
Altron Arrow Power Electronics / Power Management
The MAX77859 from Analog Devices is a high-efficiency, high-performance buck-boost converter targeted for systems requiring a wide input voltage range of between 2,5 and 22 V.

Read more...
High-density power module for AI at the edge applications
Altron Arrow Power Electronics / Power Management
The MCPF1412 power module from Microchip has integrated I2C and PMBus interfaces for flexible configuration and monitoring.

Read more...
EEPROMs for industrial and military markets
Vepac Electronics DSP, Micros & Memory
Designed to ensure the data retention and the secure and safe boot of digital systems, the memory product line includes small and medium density EEPROMs from 16 kb to 1 Mb.

Read more...
When it comes to long-term reliability of RF amplifier ICs, focus first on die junction temperature
Altron Arrow Editor's Choice Telecoms, Datacoms, Wireless, IoT
When considering the long-term reliability of integrated circuits, a common misconception is that high package or die thermal resistance is problematic. However, high or low thermal resistance, by itself, tells an incomplete story.

Read more...
PLCnext – Open, IIoT-ready industrial platform
IOT Electronics DSP, Micros & Memory
PLCnext can be used alongside an existing PLC system, collecting control system data via EtherNet/IP, PROFINET, or MODBUS, and can push this information to a cloud instance.

Read more...
ICs vs modules: Understanding the technical trade-offs for IoT applications
NuVision Electronics Editor's Choice DSP, Micros & Memory
As the IoT continues to transform industries, design decisions around wireless connectivity components become increasingly complex with engineers often facing the dilemma of choosing between ICs and wireless modules for their IoT applications.

Read more...
Hardware quantum resistance to embedded controllers
Avnet Silica DSP, Micros & Memory
To help system architects meet evolving security demands, Microchip Technology has developed its MEC175xB embedded controllers with embedded immutable post-quantum cryptography support.

Read more...
High-performance processor for edge-AI
Altron Arrow DSP, Micros & Memory
The STM32MP23 microprocessor from STMicroelectronics is the latest addition to the STM32MP2 series, designed to meet the demands of industrial, IoT, and edge AI applications.

Read more...