Editor's Choice


A perfect match: Cloud-based positioning and LoRaWAN

23 November 2022 Editor's Choice Telecoms, Datacoms, Wireless, IoT

Today’s IoT project designers are continuously looking for opportunities to reach new ultra-low levels of power consumption for constrained IoT applications such as asset tracking, supply chain and logistics management, smart agriculture, smart cities, and environmental monitoring. This quest leads designers to consider LoRa, a non-cellular low-power wide-area (LPWA) network technology.

However, a key shortcoming of LoRaWAN is precisely what it touts as its strength: low bandwidth. Compared with cellular connectivity, and because of the frequency bands it utilises, LoRaWAN doesn’t allow continuous messaging, making it suitable only for short periodic communication.

Many IoT devices require location information to do the job. While LoRaWAN offers distinctive low power benefits that make its GPS-free geolocation feature seem like an attractive alternative to a more traditional power-hungry GNSS approach, its location accuracy is insufficient for many IoT applications that require less than 10 m location accuracy. This is where GNSS receiver modules come into the design consideration.

A second shortcoming of GNSS devices is the need for assistance data in the form of AGPS to speed up the TTFF. This AGPS system needs connectivity to be able to download the required data, to reduce the TTFF to mere seconds.

u-blox now has an innovative cloud-based positioning solution. The M10 ultra-low-power GNSS receiver module, in combination with CloudLocate, the u-blox positioning-in-the-cloud service, are ideally suited for power-constrained applications that require large power autonomy, a reasonable position accuracy of a few metres, a few location updates per day, and where location information is not used on the device itself.

This innovative positioning solution brings power autonomy to constrained IoT devices by offloading position calculation to the cloud. Because the GNSS signals are pre-processed on the receiver, the solution works with a tiny data packet size of 12 to 50 bytes. u-blox’s CloudLocate uses only the uplink connection to the cloud to resolve position without the need for traditional assistance data, making this technology the perfect complement for a low bandwidth LoRaWAN solution that also requires metre-level position accuracy.

During operation the GNSS signals are first pre-processed on the receiver, and then a data packet size of 12 to 50 bytes is transmitted to the cloud, where the power-intensive position calculation is performed, off the actual device. No downlink is needed, because location information is not used on the device itself, but rather by a cloud service. In this way, CloudLocate is ideally suited even for IoT applications in limited bandwidth networks such as LoRaWAN that have no suitable downlink.

The MAX-M10 supports concurrent reception of four GNSSs (GPS, GLONASS, Galileo, and BeiDou). The high number of visible satellites enables the receiver to select the best signals. This maximises the position availability, under challenging conditions such as in deep urban canyons. u-blox Super-S technology offers great RF sensitivity and can improve the dynamic position accuracy by up to 25% with small antennas or in a non-line-of-sight scenario.

The u-blox MAX-M10S GNSS modules are designed to operate with extremely low power consumption, using less than 25 mW in continuous tracking mode, without compromising GNSS performance. The overall power consumption can be reduced further by minimising the time that the GNSS receiver is switched on and by outsourcing the power-intensive position calculation off the device and to the cloud. CloudLocate does exactly that, saving up to 90% of power consumption and acquisition time compared to a standalone GNSS. A position request can consume as little as 25 µW/h, meaning months spent in the field before needing charging.

This exciting platform is being used by Move-X on the Cicerone board, a LoRaWAN radio connectivity solution. This board is built around a Move-X radio module that provides both LoRaWAN connectivity and processing power for the user application. It can be operated via a single-cell LiPo battery and embeds a charging circuit, and is the ideal platform for developing IoT projects using cloud-based positioning and LoRaWAN.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

High performance SDR design considerations
RFiber Solutions Editor's Choice DSP, Micros & Memory
As the spectrum gets increasingly crowded, and adversaries more capable, the task of examining wide bands and making sense of it all, while not missing anything, gets harder.

Read more...
Microtronix revives defunct cell phone plant
Microtronix Manufacturing Editor's Choice Manufacturing / Production Technology, Hardware & Services
In a significant move for South Africa’s struggling electronics manufacturing sector, local technology firm Microtronix has breathed new life into a formerly defunct cell phone manufacturing facility.

Read more...
How smart components drive sustainable industrial efficiency
TRX Electronics Editor's Choice Manufacturing / Production Technology, Hardware & Services
Manufacturing industries across South Africa face mounting pressure to reduce operational costs whilst meeting increasingly stringent environmental regulations, and the path to achieving these goals lies in embracing advanced electronic components that enable smarter, more efficient industrial operations.

Read more...
From the editor's desk: Fostering a love for engineering through DIY projects
Technews Publishing Editor's Choice
Many students are turning away from these perceived ‘hard’ STEM subjects, moving instead toward soft sciences and fields that seem less intimidating or more immediately rewarding.

Read more...
Nordic Semiconductor acquires Memfault
RF Design News
With this acquisition, Nordic has launched its first complete chip-to-cloud platform for lifecycle management of connected products.

Read more...
Satellite IoT through non-terrestrial networks
Future Electronics Editor's Choice Telecoms, Datacoms, Wireless, IoT
Non-terrestrial networks fill cellular coverage gaps in remote areas by extending terrestrial networks and are not subject to disruptions from natural disasters or sabotage.

Read more...
Enhance SiC device efficiency using merged-pin Schottky diodes
NuVision Electronics Editor's Choice Power Electronics / Power Management
Silicon carbide (SiC) has advantages over silicon (Si) that make it particularly suitable for Schottky diodes in applications such as fast battery chargers, photovoltaic (PV) battery converters, and traction inverters.

Read more...
Energy harvesting and Matter for smarter homes
RF Design Power Electronics / Power Management
Qorvo’s collaboration with e-peas on the Matter Enabled Light Switch marks another significant step in advancing Matter adoption across the IoT industry.

Read more...
Dual-band GNSS antenna
RF Design Telecoms, Datacoms, Wireless, IoT
The Taoglas Accura GVLB258.A, is a passive, dual-band GNSS L1/L5, high-performance antenna for high precision GNSS accuracy and fast positioning.

Read more...
What is Wi-Fi HaLow and why choose it for IoT?
iCorp Technologies Editor's Choice Telecoms, Datacoms, Wireless, IoT
Wi-Fi HaLow introduces a low power connectivity option that, in contrast to other Wi-Fi options, offers greater range of approximately 1 km, which opens up a raft of IoT use cases.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved