Telecoms, Datacoms, Wireless, IoT


GNSS vs GPS: Understanding the differences

30 August 2024 Telecoms, Datacoms, Wireless, IoT

In the era of digital transformation, navigation technology has revolutionised how people traverse the world, conduct business, and interact with the environment. Imagine a world where delivery drones zip through urban skies with pinpoint accuracy, autonomous vehicles navigate bustling streets seamlessly, and farmers optimise their crops with centimetre-level precision. This is the power of modern navigation systems.

While GPS is a familiar term to many, GNSS is less known, but equally important. Understanding the distinctions between these two systems can unlock many possibilities for businesses across various industries. This blog delves into the critical differences between GNSS and GPS, exploring why these differences matter, and how they can be leveraged to drive innovation and efficiency.

What is GNSS?

GNSS stands for Global Navigation Satellite System. It is an umbrella term encompassing all global satellite positioning systems. These systems include:

• GPS – USA.

• Galileo – European Union.

• BeiDou – China.

• GLONASS – Russia.

• NavIC – India.

• QZSS – Japan.

Each system consists of a constellation of satellites orbiting the Earth, transmitting signals that enable receivers on the ground to determine their precise location. The integration of multiple satellite systems allows GNSS to provide enhanced accuracy, redundancy, and reliability.

What is GPS?

GPS is a specific GNSS developed by the United States Department of Defense. Initially intended for military use, it was later made available for civilian applications. The GPS system comprises up to 31 medium Earth orbit satellites, which continuously transmit time signals and their own position. GPS receivers use these signals to calculate exact location information, making GPS the most widely recognised and utilised component of GNSS.

Key differences between GNSS and GPS scope and coverage:

GNSS

• Utilisation of multiple satellite constellations: GNSS encompasses a variety of satellite systems from different countries, such as GPS, GLONASS, Galileo, BeiDou, IRNSS, and QZSS. This diversity ensures comprehensive global coverage, and enhances the reliability of GNSS technology.

• Coverage in challenging environments: With access to multiple constellations, GNSS can provide accurate location data even in environments where GPS alone might struggle, such as dense urban areas, mountainous regions, and heavily forested landscapes.

• GNSS antenna enhancement: High-quality GNSS antennas are designed to receive signals from various satellite constellations, ensuring robust and uninterrupted connectivity.

GPS

• Operated by the United States: GPS is a satellite navigation system operated solely by the United States.

• Part of the broader GNSS framework: While GPS is a critical component of GNSS, its reliance on a single constellation can limit its effectiveness in certain scenarios, particularly in regions with signal obstructions.

• GPS antennas: Specialised GPS antennas are designed to maximise the reception of signals from the GPS constellation, enhancing the accuracy and reliability of GPS-based applications.

Redundancy and reliability:

GNSS

• Multiple satellite systems: A GNSS receiver’s ability to access different satellite systems enhances redundancy. If signals from one system are blocked or fail, GNSS receivers can continue to utilise other available satellite constellations, ensuring continuous and reliable operation.

• Critical applications: This redundancy is vital for applications in aviation, maritime navigation, emergency services, and other fields where uninterrupted positioning data is crucial for safety and operational efficiency.

GPS

• Dependence on NAVSTAR constellation: GPS relies on the NAVSTAR satellite constellation. Any disruptions, whether due to signal blockage or system failures, can significantly impact GPS-only receivers, leading to potential downtime or inaccuracies.

• Common applications: Despite its limitations, GPS is widely used in applications where reliability is critical, but the environment is less challenging, such as personal navigation, basic mapping, and recreational activities. Many aviation, maritime, and defence users rely solely on GPS for their critical applications due to its established trust and reliability in providing accurate Position Navigation Timing (PNT).

Accuracy:

GNSS

• Multi-constellation support: GNSS receivers can combine signals from various systems, reducing errors caused by atmospheric conditions and signal obstructions. Standard single-band/multi-constellation receivers typically achieve accuracy within 3 metres. Dual- or triple-band receivers can improve accuracy to approximately 1,2 to 1,5 metres. With the use of augmentation and correction methods, high-precision solutions can achieve centimetre-level accuracy. These dual/triple-band receivers and the use of augmentation/correction fall into the ‘high-precision’ category, which is crucial for applications requiring exact positioning data.

• Essential for precision applications: Such precision is crucial for industries like surveying, agriculture, and autonomous vehicle navigation.

GPS

• Standard accuracy: GPS offers good accuracy, generally within 10 metres for standard applications. GPS accuracy is comparable to GNSS accuracy, as both systems can achieve similar levels of precision. Survey-grade GPS systems can achieve centimetre-level accuracy, but their performance can still be influenced by environmental factors. High-precision applications often utilise augmentation and correction methods to improve accuracy further.

• Widely used: GPS is widely used in applications where sub-metre accuracy is sufficient, such as personal navigation, fitness tracking, and outdoor recreational activities.

Conclusion

Understanding the differences between GNSS and GPS is not just about technical knowledge; it’s a strategic imperative for businesses across various sectors. GNSS offers broader coverage, higher accuracy, and increased reliability, making it indispensable for applications that demand precise and continuous positioning. By investing in advanced GNSS technology and implementing best practices, businesses can enhance their operations, manage risks, and gain a competitive edge.

For more information contact RF Design, +27 21 555 8400, [email protected], www.rfdesign.co.za


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Industrial Ethernet time sensitive networking switch
RS South Africa Telecoms, Datacoms, Wireless, IoT
The ADIN3310 and ADIN6310 are 3-port and 6-port Gigabit Ethernet time sensitive networking (TSN) switches with integrated security primarily designed for industrial Ethernet applications.

Read more...
When it comes to long-term reliability of RF amplifier ICs, focus first on die junction temperature
Altron Arrow Editor's Choice Telecoms, Datacoms, Wireless, IoT
When considering the long-term reliability of integrated circuits, a common misconception is that high package or die thermal resistance is problematic. However, high or low thermal resistance, by itself, tells an incomplete story.

Read more...
Automotive-grade digital isolators
Telecoms, Datacoms, Wireless, IoT
The NSI83xx series of capacitive-based isolators from NOVOSENSE Microelectronics offer superior EOS resilience and minimal power noise susceptibility.

Read more...
Why bis means business for LTE Cat 1 IoT connections
NuVision Electronics Editor's Choice Telecoms, Datacoms, Wireless, IoT
Tomaž Petaros, product manager IoT EMEA at Quectel Wireless Solutions explains why the market for Cat 1bis IoT connections is getting busy.

Read more...
Wi-Fi in 2025: When is Wi-Fi 7 the answer?
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Wi-Fi 7 introduces multi-link operation and lower latency, a game-changing feature that allows devices to transmit and receive data across multiple frequency bands simultaneously to significantly reduce network congestion.

Read more...
Bluetooth Lite SoCs purpose built for IoT
NuVision Electronics Telecoms, Datacoms, Wireless, IoT
Whether it is enabling predictive maintenance on industrial equipment, tracking assets in dense environments, or running for years on a coin cell battery in ultra-low power sensors, developers need solutions that are lean, reliable, and ready to scale with emerging use cases.

Read more...
LTE Cat 1bis module
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
The A7673X LTE Cat 1bis module from SimCom is engineered to meet the growing demands of the IoT industry, offering exceptional performance and seamless integration.

Read more...
Track with precision
Electrocomp Telecoms, Datacoms, Wireless, IoT
KYOCERA AVX provides innovative antennas for cellular, LTE-M, NB-IoT, LoRa, GNSS, BLE, UWB, Wi-Fi, and future Satellite IoT.

Read more...
Wi-Fi 7 front-end module
RF Design Telecoms, Datacoms, Wireless, IoT
The Qorvo QPF4609 is an integrated front end module designed for 802.11be systems that has integrated matching, which minimises layout area.

Read more...
Multi-channel downconverter
Vepac Electronics Telecoms, Datacoms, Wireless, IoT
The Downconverter from Crane Aerospace is a converter that operates from 2 to 18 GHz and delivers a noise figure of 11 dB with an attenuation range of 25 dB.

Read more...