IoT products are demanding higher frequencies and wider bandwidths than ever with varied sectors driving the demand for extreme 5G speed support in RF PCB design. These include connected vehicles, smart homes, smart cities, connected health, smart media, smart agriculture, and smart industrial applications.
Compared to 4G, 5G networks can deliver up to ten times less latency with fifty times more speed and 1000 times more capacity making it the protocol of choice for new IoT designs and products. However, key challenges in RF PCB design need to be addressed like higher frequency and wider bandwidths, multiple input and multiple output (MIMO) and beam steering, over-the-air testing, and 5G NR’s coexistence with other wireless communication systems. These challenges are amplified as product complexity increases – products are demanding smaller form-factors while simultaneously housing larger circuits.
5G specifications stipulate that handsets must support four downlink paths for bands above 1 GHz, to enable higher data rates. This requires four antennas and four independent RF pathways. For many handsets, the change will mean a substantial increase in RF content, signal-routing complexity, and antenna bandwidth. It will be challenging to squeeze even more content into already-crowded space allocated to the RF front end, and highly integrated solutions will be needed to minimise solution size and increase performance.
Antenna tuning will become even more important to keep the total number of antennas within manageable limits. In addition, increased signal-routing complexity will require the use of antenna-plexers that maximise the number of signal connections, while maintaining low insertion loss.
Companies wishing to take their design performance to the next level need to implement technology enablers to support their PCB design process, and designing PCBs with RF requires design features and capabilities that are specific to RF. These include:
• Ground stitching vias to shield RF circuits.
• Restrictive clearance rules specific to RF.
• Automated RF circuit arrangement and grouping.
• Meanders.
• Via-stitching for easy creation of co-planar wave guides.
• Flood regions with vias according to your rules.
• The import of complex RF shapes.
• Chamfered corners.
PCB design tools that support RF-centric design capabilities have a competitive advantage. Siemens Digital Industries Software provides you with a product design flow that puts your high-speed RF (IoT) products in a position to be ‘first-to-market’.
From the editor's desk: Is the current AI really what we want? Technews Publishing
Editor's Choice
The companies that develop LLMs need to change direction and concentrate on freeing up our time, not so that we can have more time to do the tasks we don’t want to do in the first place, but rather to allow us more time to do what we love.
Read more...ICs vs modules: Understanding the technical trade-offs for IoT applications NuVision Electronics
Editor's Choice DSP, Micros & Memory
As the IoT continues to transform industries, design decisions around wireless connectivity components become increasingly complex with engineers often facing the dilemma of choosing between ICs and wireless modules for their IoT applications.
Read more...Why bis means business for LTE Cat 1 IoT connections NuVision Electronics
Editor's Choice Telecoms, Datacoms, Wireless, IoT
Tomaž Petaros, product manager IoT EMEA at Quectel Wireless Solutions explains why the market for Cat 1bis IoT connections is getting busy.
Read more...Accelerating AI adoption in MCU manufacturing
Editor's Choice AI & ML
To gain the value of ML functionality, designers of MCU-based devices have to adopt a new development method and accept a new type of probabilistic rather than deterministic output.
Read more...Eskom’s evolution sparks hope
Editor's Choice
Eskom’s evolution has sparked hope that a large corporation can change and learn to think outside the grid.