Editor's Choice


The current state of GaN use for RF technology

26 February 2021 Editor's Choice Telecoms, Datacoms, Wireless, IoT

Gallium nitride (GaN) based semiconductors have been commercially available for several years at this point. GaN technology has made extensive inroads into many power electronics applications, and increasingly in RF/microwave/millimetre-wave applications.

GaN, as a semiconductor, has high electron mobility, high band-gap voltage, is very rugged, and can be realised in a variety of technologies using layering and epitaxial growth (semiconductor on insulator technology). This includes GaN on silicon carbide (GaN-on-SiC), GaN on silicon (GaN-on-Si), GaN-on-GaN, and even GaN on diamond. The various insulative substrates exhibit a range of performance, reliability, power density, price, and other manufacturing/design concerns. This allows for GaN technology to meet the needs for a vast range of applications.

The most common applications for GaN to date in the RF industry have been for power amplifiers (PA). However, several companies have also developed GaN low-noise amplifiers, mixers, diodes, switches, resistors, and other RF components.

The prevailing theme is that GaN devices tend to be designed for high-frequency and high-power use cases. This is a result of GaN’s cost being a premium over other high-frequency semiconductor technologies, such as Si and gallium arsenide (GaAs), but with far better high-power performance. For instance, in some high-frequency, wide-bandwidth, and high-power applications beyond 6 GHz, several GaAs or Si PAs would be needed to reach the performance of a single GaN PA that may also be more reliable and efficient. In other cases, GaN has also replaced GaAs and indium phosphide (InP) devices in high-frequency and wideband applications, such as sensing and test and measurement instruments.

These features have also led to GaN devices penetrating markets typically dominated by legacy technologies, such as laterally diffused metal oxide semiconductor (LDMOS) Si PAs and travelling wave tube amplifiers (TWTAs). These applications include high-frequency and high-peak pulsed power use cases, such as radar, radar jammers, and satellite communications in the Ka band (27 GHz to 40 GHz). Due to the versatility of GaN devices, GaN amplifiers are also used in commercial wireless applications, such as the ongoing rollout of 4G/5G sub-6 GHz and 5G millimetre-wave infrastructure.

GaN amplifiers and other devices are made to handle frequencies from near DC to tens of gigahertz. Recent research has also explored GaN devices that operate to over 100 GHz and even terahertz (THz). As most mainstream applications are still below 6 GHz, the largest markets for GaN devices are replacing high-power amplifiers (HPAs) in these frequencies. Defence, aerospace, and satellite communications and sensing applications are also embracing millimetre-wave GaN PAs at a high rate.

Due to this diversity of use cases it is difficult to accurately predict the market growth and penetration of GaN technology, but market research firms generally forecast GaN’s growth at more than 10% compound annual growth rate per year through the 2020s.

Other challenges for predicting the growth and penetration of GaN technology in certain markets also come from the extent of the research and development being invested in GaN. A main area of this research is developing GaN PAs with high power added efficiency (PAE) for modern wireless communications. The new modulation schemes and techniques employed by new 5G and other wireless communication technologies incur additional design constraints for PAs, such as the need for high efficiency, high power, and wide bandwidth.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

The trends driving uptake of IoT Platform as a Service
Trinity IoT Editor's Choice Telecoms, Datacoms, Wireless, IoT
IoT platforms, delivered as a service, are the key that will enable enterprises to leverage a number of growing trends within the IT space, and access a range of benefits that will help them grow their businesses.

Read more...
Interlynx-SA: Engineering SA’s digital backbone
Interlynx-SA Editor's Choice
At the heart of the industrial shift towards digitalisation lies the growing demand for telemetry, Industrial IoT (IIoT), advanced networking, and robust data solutions, and Interlynx-SA is meeting this demand.

Read more...
Converting high voltages without a transformer
Altron Arrow Editor's Choice Power Electronics / Power Management
With appropriate power converter ICs, such as the LTC7897 from Analog Devices, many applications can be suitably powered without having to use complex and cost-intensive transformers.

Read more...
RF power amplifier
RF Design Telecoms, Datacoms, Wireless, IoT
The ZHL-20M2G7025X+ from Mini-Circuits is a 32 W power amplifier that operates from 20 to 2700 MHz and delivers a saturated output power of +45 dBm.

Read more...
Grinn Global: From design house to SoM innovator
Editor's Choice
From its beginnings as a small electronic design house, Grinn Global has moved into the spotlight as a system-on-module innovator working alongside technology giants like MediaTek.

Read more...
USB/Ethernet smart RF power sensor
RF Design Telecoms, Datacoms, Wireless, IoT
The PWR-18PWHS-RC from Mini-Circuits is an RF power sensor that operates from 50 MHz to 18 GHz and is designed to capture pulsed and trace modulated signals with very high data resolution.

Read more...
Tiny Bluetooth LE + 802.15 + NFC module
RF Design Telecoms, Datacoms, Wireless, IoT
Unleashing enhanced processing power, expanded memory, and innovative peripherals, the BL54L15µ from Ezurio is the ultimate choice for small and low power connectivity.

Read more...
Trasna and RF Design announce distribution agreement
RF Design News
Trasna and RF Design have announced a strategic distribution agreement for cellular IoT solutions which will ensure seamless availability of Trasna’s cellular connectivity solutions.

Read more...
Active event tracking using a novel new technique
Editor's Choice
SPAES (single photon active event sensor) 3D sensing, developed by VoxelSensors, is a breakthrough technology that solves current critical depth sensing performance limitations for robotics applications.

Read more...
ABB commits to a more inclusive future as it empowers women and youth in engineering
ABB South Africa Editor's Choice
Through structured development, inclusive hiring, and focused empowerment, ABB Electrification is shaping a more equitable and dynamic future for the engineering industry.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved