Editor's Choice


The current state of GaN use for RF technology

26 February 2021 Editor's Choice Telecoms, Datacoms, Wireless, IoT

Gallium nitride (GaN) based semiconductors have been commercially available for several years at this point. GaN technology has made extensive inroads into many power electronics applications, and increasingly in RF/microwave/millimetre-wave applications.

GaN, as a semiconductor, has high electron mobility, high band-gap voltage, is very rugged, and can be realised in a variety of technologies using layering and epitaxial growth (semiconductor on insulator technology). This includes GaN on silicon carbide (GaN-on-SiC), GaN on silicon (GaN-on-Si), GaN-on-GaN, and even GaN on diamond. The various insulative substrates exhibit a range of performance, reliability, power density, price, and other manufacturing/design concerns. This allows for GaN technology to meet the needs for a vast range of applications.

The most common applications for GaN to date in the RF industry have been for power amplifiers (PA). However, several companies have also developed GaN low-noise amplifiers, mixers, diodes, switches, resistors, and other RF components.

The prevailing theme is that GaN devices tend to be designed for high-frequency and high-power use cases. This is a result of GaN’s cost being a premium over other high-frequency semiconductor technologies, such as Si and gallium arsenide (GaAs), but with far better high-power performance. For instance, in some high-frequency, wide-bandwidth, and high-power applications beyond 6 GHz, several GaAs or Si PAs would be needed to reach the performance of a single GaN PA that may also be more reliable and efficient. In other cases, GaN has also replaced GaAs and indium phosphide (InP) devices in high-frequency and wideband applications, such as sensing and test and measurement instruments.

These features have also led to GaN devices penetrating markets typically dominated by legacy technologies, such as laterally diffused metal oxide semiconductor (LDMOS) Si PAs and travelling wave tube amplifiers (TWTAs). These applications include high-frequency and high-peak pulsed power use cases, such as radar, radar jammers, and satellite communications in the Ka band (27 GHz to 40 GHz). Due to the versatility of GaN devices, GaN amplifiers are also used in commercial wireless applications, such as the ongoing rollout of 4G/5G sub-6 GHz and 5G millimetre-wave infrastructure.

GaN amplifiers and other devices are made to handle frequencies from near DC to tens of gigahertz. Recent research has also explored GaN devices that operate to over 100 GHz and even terahertz (THz). As most mainstream applications are still below 6 GHz, the largest markets for GaN devices are replacing high-power amplifiers (HPAs) in these frequencies. Defence, aerospace, and satellite communications and sensing applications are also embracing millimetre-wave GaN PAs at a high rate.

Due to this diversity of use cases it is difficult to accurately predict the market growth and penetration of GaN technology, but market research firms generally forecast GaN’s growth at more than 10% compound annual growth rate per year through the 2020s.

Other challenges for predicting the growth and penetration of GaN technology in certain markets also come from the extent of the research and development being invested in GaN. A main area of this research is developing GaN PAs with high power added efficiency (PAE) for modern wireless communications. The new modulation schemes and techniques employed by new 5G and other wireless communication technologies incur additional design constraints for PAs, such as the need for high efficiency, high power, and wide bandwidth.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Dual-band GNSS antenna
RF Design Telecoms, Datacoms, Wireless, IoT
The Taoglas Accura GVLB258.A, is a passive, dual-band GNSS L1/L5, high-performance antenna for high precision GNSS accuracy and fast positioning.

Read more...
What is Wi-Fi HaLow and why choose it for IoT?
iCorp Technologies Editor's Choice Telecoms, Datacoms, Wireless, IoT
Wi-Fi HaLow introduces a low power connectivity option that, in contrast to other Wi-Fi options, offers greater range of approximately 1 km, which opens up a raft of IoT use cases.

Read more...
Simple battery charger ICs for any chemistry
Altron Arrow Editor's Choice Power Electronics / Power Management
The LTC4162 is a highly integrated, high voltage multi-chemistry synchronous monolithic step-down battery charger and PowerPath manager with onboard telemetry functions and optional maximum power point tracking.

Read more...
From the editor's desk: Is the current AI really what we want?
Technews Publishing Editor's Choice
The companies that develop LLMs need to change direction and concentrate on freeing up our time, not so that we can have more time to do the tasks we don’t want to do in the first place, but rather to allow us more time to do what we love.

Read more...
When it comes to long-term reliability of RF amplifier ICs, focus first on die junction temperature
Altron Arrow Editor's Choice Telecoms, Datacoms, Wireless, IoT
When considering the long-term reliability of integrated circuits, a common misconception is that high package or die thermal resistance is problematic. However, high or low thermal resistance, by itself, tells an incomplete story.

Read more...
ICs vs modules: Understanding the technical trade-offs for IoT applications
NuVision Electronics Editor's Choice DSP, Micros & Memory
As the IoT continues to transform industries, design decisions around wireless connectivity components become increasingly complex with engineers often facing the dilemma of choosing between ICs and wireless modules for their IoT applications.

Read more...
Why bis means business for LTE Cat 1 IoT connections
NuVision Electronics Editor's Choice Telecoms, Datacoms, Wireless, IoT
Tomaž Petaros, product manager IoT EMEA at Quectel Wireless Solutions explains why the market for Cat 1bis IoT connections is getting busy.

Read more...
Wi-Fi 7 front-end module
RF Design Telecoms, Datacoms, Wireless, IoT
The Qorvo QPF4609 is an integrated front end module designed for 802.11be systems that has integrated matching, which minimises layout area.

Read more...
Interview with Brian Aziz, vice president of global sales, Iridium
Editor's Choice
ridium is the leading satellite IoT player. Their network consists of 66 active low Earth orbit satellites covering every inch of the globe and are used for IoT and emergency services worldwide.

Read more...
Accelerating AI adoption in MCU manufacturing
Editor's Choice AI & ML
To gain the value of ML functionality, designers of MCU-based devices have to adopt a new development method and accept a new type of probabilistic rather than deterministic output.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved