Editor's Choice


Containers: the edge compute strategy of the future

29 March 2023 Editor's Choice

The introduction of the Industrial Internet of Things (IIoT) highlighted the value of data in the industrial space. From sending small amounts of operational data for remote monitoring and diagnostics, the industry quickly grew to the centralisation of huge amounts of asset and data for analysis.

Suddenly, oil and gas companies could remotely monitor conditions throughout the production environment – despite the remoteness of the assets – and understand the operational state of equipment. Agricultural concerns could improve livestock management through better monitoring, and reduce over-watering of crops by taking advantage of smart irrigation. Meanwhile, energy companies could connect all their energy assets via wireless technologies to create energy ecosystems that incorporate renewables, are more resilient, and help reduce outages or blackouts.

In some traditional IIoT data streams, large amounts of data are collected and communicated to a data centre. Computational work is then performed, and an action may be sent back. In addition to the huge amounts of data that must be sent and potentially stored in the cloud, this approach also leaves some IIoT solutions vulnerable to network outages.

With edge computing, the computational work can be done locally near the machine where the data is generated. This eliminates the need to transmit and store huge amounts of data in the cloud, and improves resilience against network downtime.

While edge computing has successfully powered an array of IIoT use cases for over a decade, it is poised to take a big step forward through the usage of containers, which will allow the IIoT to unlock an even greater array of possibilities.

Containers are poised to enter the edge computing fray as they will prevent the problems currently experienced with proprietary systems. Vendors manufacture closed systems, and writing an application for a specific device means that the developer is locked into using whatever language that device uses. Containers will help change this paradigm and remove these limitations.

Most are familiar with virtualisation, which allows any operating system and associated applications to run on a server or PC by creating virtual machines that sit on top of the hardware and main OS. The virtual machine can utilise the memory, storage, and other hardware resources, including virtualised ones.

Containers offer a similar ability to effectively run multiple isolated applications on a single device. In addition, by limiting some of the flexibility of virtual machines they can run with a much smaller footprint. Because of the pervasive adoption of container support the net result is that a customer can easily package up an application, put it onto nearly any piece of hardware, and be assured that it will run. There’s no need to worry about having to rewrite the code for whatever framework and language the vendor is using.

This portability equally applies to customers with legacy applications that were written in a programming language that has fallen out of favour. If the legacy application can be containerised, it can then be moved to whatever the latest generation, state-of-the-art hardware platform might be.

As containers have become widely used in the cloud and at the edge, the ecosystem has also developed. Many software vendors have packaged applications into container images ready to be deployed into edge compute systems with little to no software development required. The net result is that a customer can often just download a solution as a container, without the need to build anything.

In this respect, the recently released Sierra Wireless AirLink RX55 industrial router solution ticks all the correct boxes.

Optimised for IIoT use cases with ultra-low power consumption and a rugged design for extreme conditions, the RX55 features advanced networking and industry standard container support capabilities.

The AirLink Operating System underpins the RX55, as well as the XR80 and XR90 routers, and includes container support (currently in closed Beta) which means that customers can write applications using programming languages and libraries of their choice, or leverage a commercial off-the-shelf offering with ease. In this way, the AirLink routers provide a future-proof platform for innovation that will enable more edge applications than ever across multiple industries.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Active event tracking using a novel new technique
Editor's Choice
SPAES (single photon active event sensor) 3D sensing, developed by VoxelSensors, is a breakthrough technology that solves current critical depth sensing performance limitations for robotics applications.

Read more...
ABB commits to a more inclusive future as it empowers women and youth in engineering
ABB South Africa Editor's Choice
Through structured development, inclusive hiring, and focused empowerment, ABB Electrification is shaping a more equitable and dynamic future for the engineering industry.

Read more...
Unlocking the next frontier – women leading digital transformation in South Africa’s technology sector
Editor's Choice
As South Africa celebrates Women’s Month, it is an ideal time to reflect on the critical role women are playing in shaping the country’s technology sector.

Read more...
Why GNSS positioning precision is enabling the next wave of IoT applications
iCorp Technologies Editor's Choice Telecoms, Datacoms, Wireless, IoT
While high-performance GNSS implementations are achievable with few limitations, most real-world applications must balance power consumption, form factor and accuracy requirements.

Read more...
5G RedCap: Unlocking scalable IoT connectivity
iCorp Technologies Editor's Choice Telecoms, Datacoms, Wireless, IoT
As 2G and 3G networks rapidly sunset across the globe, the Internet of Things (IoT) market faces a critical challenge: how to maintain reliable cellular connectivity without the complexity or cost of full 5G.

Read more...
Is RFoIP technology the future for signal transportation for Satcom applications?
Accutronics Editor's Choice Telecoms, Datacoms, Wireless, IoT
RFoF technology continues to be used for successful IF signal transportation in the ground segment and there is widespread belief that it will be for some time to come, especially for critical communications applications.

Read more...
Multi-config connector series
Future Electronics Interconnection
Hirose Electric’s DF11 Series is a versatile 2,0 mm pitch, double-row board-to-wire connector designed to simplify a wide range of connection needs.

Read more...
Celebrating innovation, leadership, and the next generation
Rebound Electronics Editor's Choice
In electronics and engineering, women are not just participating; they are transforming, innovating, and shaping the future.

Read more...
Women leading the charge in SA’s energy sector
Editor's Choice
While historically male-dominated, the energy industry is slowly but surely opening its doors to more diverse voices and talents.

Read more...
High performance SDR design considerations
RFiber Solutions Editor's Choice DSP, Micros & Memory
As the spectrum gets increasingly crowded, and adversaries more capable, the task of examining wide bands and making sense of it all, while not missing anything, gets harder.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved