Precise non-invasive monitoring of vital signs
30 August 2023
Editor's Choice
News
Scientists at Sydney Nano and the School of Physics have developed a new photonic radar system that delivers contactless, high-definition detection of vital signs. This technology, still in its infancy, could be further developed for use in ICUs and aged-care facilities. It could also be used for people with sleep apnoea or for infants where there is a concern with breathing.
Constant monitoring of vital health signs is needed in a variety of clinical environments. At present, this is mostly achieved via wired or invasive contact systems. In certain cases, however, these contact systems are not suitable for application. Camera systems have also
been used to monitor vital signs, but these systems are sensitive to skin colour and lighting conditions. The thermal cameras deployed also have limited resolution.
Scientists at the University of Sydney Nano Institute and the NSW Smart Sensing Network have now developed a photonic radar system that allows for highly precise, non-invasive monitoring. The system was demonstrated by monitoring the pauses in breathing in cane toads where the system was able to accurately detect the change in breathing.
“Photonic radar uses a light-based, photonics system – rather than traditional electronics – to generate, collect and process the radar signals. This approach allows for very wideband generation of radio frequency (RF) signals, offering highly precise and simultaneous, multiple tracking of subjects,” said lead author Ziqian Zhang, a hD student in the School of Physics.
The system combined this approach with light detection and ranging (LiDAR). The radar generated 10 GHz-wide SF RF signals in the Ka-band (26,5 to 40 GHz) to detect the respiratory activities, achieving a range of 13,7 mm with micrometre-level accuracy. This high resolution and accuracy are essential to resolve the delicate vital signs of the cane toad, even with an undersized animal cross-section. The system then used a LiDAR vital sign detection monitoring based on the same microwave photonic source, showing that LiDAR and radar could be used together as a complementary system.
This hybrid approach, radar plus LiDAR, delivered a vital sign detection system with a resolution down to six millimetres with micrometre-level accuracy, which is suitable for clinical environments.
Further reading:
From the editor's desk: Is the current AI really what we want?
Technews Publishing
Editor's Choice
The companies that develop LLMs need to change direction and concentrate on freeing up our time, not so that we can have more time to do the tasks we don’t want to do in the first place, but rather to allow us more time to do what we love.
Read more...
When it comes to long-term reliability of RF amplifier ICs, focus first on die junction temperature
Altron Arrow
Editor's Choice Telecoms, Datacoms, Wireless, IoT
When considering the long-term reliability of integrated circuits, a common misconception is that high package or die thermal resistance is problematic. However, high or low thermal resistance, by itself, tells an incomplete story.
Read more...
ICs vs modules: Understanding the technical trade-offs for IoT applications
NuVision Electronics
Editor's Choice DSP, Micros & Memory
As the IoT continues to transform industries, design decisions around wireless connectivity components become increasingly complex with engineers often facing the dilemma of choosing between ICs and wireless modules for their IoT applications.
Read more...
Why bis means business for LTE Cat 1 IoT connections
NuVision Electronics
Editor's Choice Telecoms, Datacoms, Wireless, IoT
Tomaž Petaros, product manager IoT EMEA at Quectel Wireless Solutions explains why the market for Cat 1bis IoT connections is getting busy.
Read more...
Interview with Brian Aziz, vice president of global sales, Iridium
Editor's Choice
ridium is the leading satellite IoT player. Their network consists of 66 active low Earth orbit satellites covering every inch of the globe and are used for IoT and emergency services worldwide.
Read more...
Accelerating AI adoption in MCU manufacturing
Editor's Choice AI & ML
To gain the value of ML functionality, designers of MCU-based devices have to adopt a new development method and accept a new type of probabilistic rather than deterministic output.
Read more...
Altron Arrow: Empowering innovation with STMicroelectronics AI processors
Altron Arrow
Editor's Choice AI & ML
ST’s AI processors are not only smarter and faster, but also incredibly efficient, enabling a new wave of intelligent solutions across multiple industries.
Read more...
The superpower driving the future of low carbon electricity
Editor's Choice
Modularity is a superpower. The advantage lies in smaller units that can be built, tested, refined, adapted, improved repetitively, allowing many experimentation and learning iterations.
Read more...
Eskom’s evolution sparks hope
Editor's Choice
Eskom’s evolution has sparked hope that a large corporation can change and learn to think outside the grid.
Read more...
Potential risks of plasma treatment on PCBs
MyKay Tronics
Editor's Choice
Plasma treatment involves exposing PCBs to an ionised gas, known as plasma, but despite many advantages, several risks must be managed to ensure safe and effective plasma application in EMS.
Read more...