Telecoms, Datacoms, Wireless, IoT


Innovation in high-frequency cable design

30 April 2025 Telecoms, Datacoms, Wireless, IoT

[Sponsored] As electronic systems continue to evolve toward higher frequencies and greater complexity, ensuring the performance of every component in the signal chain becomes vital. In RF and microwave systems, connectors and cables play a decisive role in overall system performance. For advanced systems, whether in aerospace, instrumentation, or high-speed computing, signal integrity (SI) is paramount. In these circumstances, precision RF connectors are essential.

With frequencies approaching 110 GHz, a mismatch in impedance, an increase in insertion loss, or minute phase distortion can be the difference between success and failure. This is why RF connectors designed for these frequencies are manufactured to such exacting tolerances. The precision is critical to achieving optimal performance. They ensure that signals are transmitted cleanly and consistently, without the distortions and degradations that can plague commercial-grade connectors.

However, connectors do not work in isolation. They are just one part of a larger, interdependent system that includes the cable and the broader interconnect architecture. Achieving peak performance requires an integrated approach in which every component is engineered to work as a whole. The result is a system with low signal loss, enhanced phase stability, and better electromagnetic shielding along the entire transmission path.

The design of any high-performance coaxial cable relies on controlling the critical relationship between the conductor and shield. The shield represents a compromise between delivering the best RF performance with the flexibility that a cable requires. Most manufacturers achieve this using a combination of a conductive foil or tape inner layer, paired with a woven braid that covers the foil.

Samtec’s NITROWAVE is a range of high-performance RF cables designed for microwave and millimetre wave (mmWave) applications. In common with many coaxial cables, NITROWAVE uses silver-plated copper as the material for both the foil and braid, with an FEP (Fluorinated ethylene propylene) jacket in Samtec’s signature orange colour to provide protection in some of the toughest conditions. Designed for demanding applications in the aerospace and defence markets, along with instrumentation and computing industries, the FEP jacket delivers a high working temperature and resistance to abrasion.

However, an unseen feature of NITROWAVE is the dynamic performance layer (DPL). The DPL is a key component in the cable’s construction, made from a layer of PTFE between the foil and braid shields. Although thin, the DPL plays a critical role in NITROWAVE’s mechanical and electrical performance. Its primary intention is to eliminate friction between the two elements of the shield, allowing the braid to move freely over the foil without damaging it. The DPL also improves overall reliability. Its PTFE layer wraps around the helical foil shield, improving the cable’s strength when flexing. It provides an interface between the delicate foil and the woven braid that surrounds it, reducing the risk of conductive oxidation. The result is a cable with a higher flex cycle life and improved durability.

Enhancing RF performance

The advantages of the DPL are not limited to improved mechanical performance. These improved physical properties also enhance electrical performance. DPL provides better phase stability. Phase is the name given to the position of a wave at a specific point in time within its cycle and is important when considering how RF signals travel along cables. A phase shift is therefore a change in the position of the wave, usually caused by external forces such as bending of the cable or changes in its temperature. Greater phase stability results in more consistent RF signals, even when the cable itself is flexing.

The DPL layer also helps to reduce capacitive coupling. This is a side effect created by the two separate shield layers. If in close contact, the layers act as the plates in a capacitor. Even the tiny amounts of electrical charge that can build up between the layers have the potential to create unwanted noise, which will have an impact on signal integrity. A thin PTFE layer such as that used in NITROWAVE is sufficient to minimise this coupling and improve overall SI performance.

NITROWAVE for all applications

The performance of NITROWAVE may suggest that it is suitable only for the most demanding applications. Some customers may decide against using a cable intended for 110 GHz performance in their design. However, NITROWAVE is not one product. Instead, it is a family of cables, each optimised for different frequencies ranging from 18 GHz up to a maximum of 110 GHz. These frequencies were selected with care following extensive studies of customer requirements, with each cable designed to minimise insertion loss across its operating frequency range.

Conclusion

NITROWAVE cables are designed to deliver superior performance in combination with Samtec’s range of Precision RF connectors. Engineered to the same tight tolerances, these connectors ensure optimal signal integrity and mechanical reliability across the entire signal path.

Whether operating at mmWave frequencies or in harsh environmental conditions, the combination of NITROWAVE cables and Samtec Precision RF connectors delivers a fully integrated, high-performance interconnect solution. Visit the Samtec website [www.samtec.com] for an in-depth view of the features of NITROWAVE. You can also download the guide to precision RF design [suddendocs.samtec.com/literature/samtec_precision_rf_design_guide.pdf].


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

STM releases innovative GNSS receiver
Altron Arrow Telecoms, Datacoms, Wireless, IoT
STMicroelectronics recently introduced the Teseo VI family of global navigation satellite system receivers aimed at high-volume precise positioning use cases.

Read more...
Bluetooth module brilliance
Avnet Silica Telecoms, Datacoms, Wireless, IoT
Following the company’s popular PAN1780, the PAN1783 Bluetooth 5.3 Low Energy (LE) module from Panasonic is based on the Nordic nRF5340 single chip controller.

Read more...
High-power radar band amplifier
RFiber Solutions Telecoms, Datacoms, Wireless, IoT
The MAPC-A4032 is a Gallium Nitride (GaN) amplifier designed specifically with high efficiency and high power for the 2,75 – 3,75 GHz S-Band radar band.

Read more...
NXP’s latest wireless chip solution
Avnet Silica Telecoms, Datacoms, Wireless, IoT
NXP’s IW610 wireless chip solution features a 1x1 dual-band Wi-Fi 6 radio subsystem, offering improved network efficiency, reduced latency and extended range.

Read more...
High-accuracy positioning
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Quectel has recently announced its LG580P, a multi-constellation, multi-band GNSS module designed for high-precision positioning that supports multi-band signals across L1, L2, L5, and L6.

Read more...
LTE Cat 1 modules offer next-gen connectivity
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
The innovative LTE modules A7683E, A7663E, and A7673X have revolutionised IoT connectivity and saved costs for developers and circuit manufacturers.

Read more...
Compact and powerful Bluetooth module
Altron Arrow Telecoms, Datacoms, Wireless, IoT
u-blox has introduced its ANNA-B5, a compact, powerful and secure Bluetooth LE module optimised for IoT applications.

Read more...
2500 W GaN on SiC amplifier
RFiber Solutions Telecoms, Datacoms, Wireless, IoT
Macom’s recently released CGHV1420KF is a 2500 W package, partially matched amplifier utilising a high performance, GaN-on-SiC production process.

Read more...
Boost your LTE/5G signal
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
Reliable connectivity is essential in today’s world - whether you’re working from home, running a small business, or living in a rural area where mobile signals are weak.

Read more...
Direct RF-sampling at microwave frequencies
RFiber Solutions Telecoms, Datacoms, Wireless, IoT
Jariet Technologies’ vision for its RF-sampling transceivers at microwave frequencies is to move the sampling to the antenna frequency.

Read more...