Telecoms, Datacoms, Wireless, IoT


Futureproofing IoT connectivity

30 June 2025 Telecoms, Datacoms, Wireless, IoT


Analysts have predicted that tens of billions of connected sensors, meters, and vehicles will be connected to networks before the end of this decade. Each unit streams telemetry, and boards expect that data to arrive safely without congestion. Such growth places intense demand on radio access, core routing, and the management layer that provides activation, authentication, and supervision.

Beyond sheer volume, traffic patterns will vary widely from alarm signals from mines, continuous data from smart agriculture, to image payloads from surveillance cameras. This relies on the network core flexing without sacrificing reliability.

Scaling pressure on public profiles

Public cellular profiles suit pilot projects, yet they falter when growth accelerates. Registering individual SIMs through several operators inflates cost, fragments policy enforcement, and leaves security tied to outside assumptions. Service objectives suffer once millions of field assets vie for spectrum, or malware attempts movement across the fleet. Visibility is another casualty; disjointed billing portals make it hard to map usage spikes to a device or region, delaying root-cause analysis when outages strike.

Architecture first, hardware second

A future-proof strategy starts with connectivity design rather than periodic device refresh. Enterprises that elevate the control plane gain room to manoeuvre as volumes rise and regulations tighten. The network must embed isolation, policy orchestration, and observability from day zero. Equally important is extensibility: adding new radio generations or deploying edge gateways should feel like a configuration update, not an overhaul.

Managed private APNs

A managed private Access Point Name assigns every device to an isolated carrier slice, producing a single ingress to the enterprise network. Traffic bypasses shared internet paths, reducing exposure and easing compliance. Operators steer packets straight into the customer’s cloud or data centre. Because the APN is software-defined, administrators adjust quality-of-service parameters through an API rather than on individual devices, ensuring deterministic performance for latency-sensitive workloads.

Whether a rollout expands from one hundred trackers to one million smart meters, the address plan, authentication method, and monitoring dashboard remain constant. This consistency removes the integration drag that stalls many projects at the proof-of-concept stage. Firmware teams refine application logic while network engineers tune policy centrally. Incident responders trace anomalous behaviour to a specific IMSI in seconds and restore stability without manual reconfiguration. Capacity planners, meanwhile, can simulate growth scenarios because every device shares the same controllable conduit.

Fit for South African conditions

Local deployments must handle diverse radio environments, from dense corridors to remote mining belts. A managed private APN supports multi-network SIM profiles under one policy umbrella, selecting the strongest carrier on the fly while keeping logs unified. That resilience safeguards data flow during loadshedding spells and sustains uptime targets defined in service agreements. It also future-proofs rural projects; as new low-power 5G variants appear, profile updates can propagate over-the-air without dispatching technicians.

A private APN surface is more than a conduit; it becomes a telemetry source. Packet-level metadata feeds capacity dashboards, cost forecasts, and anomaly alerts. Combined with automated SIM-state changes, organisations can retire dormant assets, contain fraud, and align data retention with PoPIA requirements, all from a single console. Predictive models then optimise radio selection, battery budgets, and firmware-over-the-air schedules, closing the loop between field behaviour and network policy.

Selecting the right partner

Providers can offer mobile APN services, bundling the private APN, SIM lifecycle automation, and real-time usage analytics in one portal. Procurement teams gain predictable billing, developers gain programmable endpoints, and security teams gain a network aligned with zero-trust principles before the first device ships.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Wi-Fi 6 and Bluetooth LE co-processor
Altron Arrow Telecoms, Datacoms, Wireless, IoT
STMicroelectronics has released its ST67W611M1, a low-power Wi-Fi 6 and Bluetooth LE combo co-processor module.

Read more...
Improving accuracy of outdoor devices
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
In a real-world environment, accessing a direct satellite signal is not always possible, and it cannot be relied upon as the only solution to provide a device with accurate location at all times.

Read more...
New 3dB hybrid couplers
Electrocomp Telecoms, Datacoms, Wireless, IoT
Designed to facilitate the continued evolution of high-frequency wireless systems in various market segments, the new DB0402 3dB 90° hybrid couplers provide repeatable high-frequency performance compatible with automated assembly.

Read more...
Next-level Software Defined Radio
IOT Electronics Telecoms, Datacoms, Wireless, IoT
Great Scott Gadgets has announced the HackRF Pro, a powerful evolution of its popular Software Defined Radio (SDR) platform designed for engineers and enthusiasts.

Read more...
High-performance Zigbee and BLE module
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
The KCMA32S from Quectel boasts an ARM Cortex-M33 processor with a frequency of up to 80 MHz, and supports Zigbee 3.0, BLE 5.3 and BLE mesh.

Read more...
Championing local PCB manufacturing
Master Circuits Telecoms, Datacoms, Wireless, IoT
Master Circuits, founded in 1994 by Peter Frankish in Durban, was born from the vision to meet the growing local demand for quick-turnaround printed circuit boards in South Africa.

Read more...
How IoT-driven smart data helps businesses stay ahead
Trinity IoT Telecoms, Datacoms, Wireless, IoT
With around 19 billion IoT devices globally, embedded in everything from machinery to vehicles to consumer products, reliable data is plentiful.

Read more...
IoT-optimised LTE Cat 1 bis module
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Quectel’s EG915K-EU is an LTE Cat 1 bis wireless communication module specially designed for M2M and IoT applications.

Read more...
Chip provides concurrent dual connectivity
EBV Electrolink Telecoms, Datacoms, Wireless, IoT
The IW693 from NXP is a 2x2 dual-band, highly integrated device that provides concurrent dual Wi-Fi 6E + Wi-Fi 6 and Bluetooth connectivity, supporting four different modes.

Read more...
The 6 GHz band radio solution
Altron Arrow Telecoms, Datacoms, Wireless, IoT
Analog Devices’ 16 nm transceiver family offers a highly integrated solution for this new frequency band, featuring low power consumption and high performance.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved