14 November 2018
Telecoms, Datacoms, Wireless, IoT
Silicon Labs has launched the next-generation Z-Wave 700 on its Wireless Gecko platform, delivering on the platform integration roadmap following its acquisition of Z-Wave technology in April 2018. The new smart home platform builds on Z-Wave's advanced S2 security and interoperability by improving energy efficiency and adding higher-performance, longer-range RF capabilities.
Z-Wave 700 combines a powerful ARM processor-based platform with large on-chip memory to enable greater intelligence at the edge and secure inclusion in less than one second. The energy-efficient platform delivers 10-year coin-cell battery life, enabling more wireless sensor applications. Enhanced RF performance extends device range beyond traditional limits to the edge of the yard and throughout a multi-story home.
Z-Wave 700 also includes SmartStart, providing an easy way to automatically create and configure Z-Wave networks for instant device installation. With no requirements for regionalised SAW filters or external memory, it offers a single global software stock-keeping unit (SKU) for easier logistics and cost-effective global production.
Why GNSS positioning precision is enabling the next wave of IoT applications iCorp Technologies
Editor's Choice Telecoms, Datacoms, Wireless, IoT
While high-performance GNSS implementations are achievable with few limitations, most real-world applications must balance power consumption, form factor and accuracy requirements.
Read more...5G RedCap: Unlocking scalable IoT connectivity iCorp Technologies
Editor's Choice Telecoms, Datacoms, Wireless, IoT
As 2G and 3G networks rapidly sunset across the globe, the Internet of Things (IoT) market faces a critical challenge: how to maintain reliable cellular connectivity without the complexity or cost of full 5G.
Read more...Is RFoIP technology the future for signal transportation for Satcom applications? Accutronics
Editor's Choice Telecoms, Datacoms, Wireless, IoT
RFoF technology continues to be used for successful IF signal transportation in the ground segment and there is widespread belief that it will be for some time to come, especially for critical communications applications.
Read more...Satellite IoT through non-terrestrial networks Future Electronics
Editor's Choice Telecoms, Datacoms, Wireless, IoT
Non-terrestrial networks fill cellular coverage gaps in remote areas by extending terrestrial networks and are not subject to disruptions from natural disasters or sabotage.
Read more...Enhance SiC device efficiency using merged-pin Schottky diodes NuVision Electronics
Editor's Choice Power Electronics / Power Management
Silicon carbide (SiC) has advantages over silicon (Si) that make it particularly suitable for Schottky diodes in applications such as fast battery chargers, photovoltaic (PV) battery converters, and traction inverters.
Read more...Redefining entry-level MCUs NuVision Electronics
DSP, Micros & Memory
The company positions the GD32C231 series as a ‘high-performance entry-level’ solution designed to offer more competitive options for multiple applications.
Read more...What is Wi-Fi HaLow and why choose it for IoT? iCorp Technologies
Editor's Choice Telecoms, Datacoms, Wireless, IoT
Wi-Fi HaLow introduces a low power connectivity option that, in contrast to other Wi-Fi options, offers greater range of approximately 1 km, which opens up a raft of IoT use cases.
Read more...MCU for low-power, IoT applications NuVision Electronics
DSP, Micros & Memory
Silicon Labs recently announced the PG26, a general-purpose microcontroller with a dedicated matrix vector processor to enhance AI/ML hardware accelerator speeds.
Read more...ICs vs modules: Understanding the technical trade-offs for IoT applications NuVision Electronics
Editor's Choice DSP, Micros & Memory
As the IoT continues to transform industries, design decisions around wireless connectivity components become increasingly complex with engineers often facing the dilemma of choosing between ICs and wireless modules for their IoT applications.
While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.