Editor's Choice


Circuit board for CERN made in SA

9 November 2016 Editor's Choice News

Researchers from the Wits Experimental High Energy Particle Physics (EHEP) group showcased the benefits of collaboration between science and industry when they displayed a South African made prototype of a high-tech electronics board at the International Conference on Research Infrastructure (ICRI) that was held in Cape Town recently.

The 16-layer board, designed for the upgrade of the electronics of the ATLAS detector at the European Organisation for Nuclear Research (CERN), was manufactured by the Cape Town based company, TraX Interconnect, which specialises in the construction of printed circuit boards (PCBs). This is believed to be the most complex PCB ever manufactured in South Africa to date.

The board was shown off at the South Africa-CERN stand at 2016 ICRI, which was hosted by the South African Department of Science and Technology (DST) and the European Commission. Dr Thomas Auf der Heyde, deputy director-general for research development and support at the DST, personally highlighted the contribution of the SA-CERN consortium towards the technology transfer of high throughput electronics to South Africa to Science and Techonology Minister, Naledi Pandor.

Professor Bruce Mellado from Wits with Science and Technology Minister, Naledi Pandor.
Professor Bruce Mellado from Wits with Science and Technology Minister, Naledi Pandor.

Minister Pandor, who was duly impressed with the collaboration, took some time to meet with Professor Bruce Mellado, leader of the Wits EHEP team leader at CERN, and his students Joyful Mdhluli, Harshna Jivan and Matthew Spoor, as well as with Professor Jean Cleymans, the chairman of the SA-CERN consortium, and Dr Zinhle Buthelezi and Dr Tom Dietel from the ALICE experiment at the stand. “We are extremely grateful of the continuing support that the Minister and DST have given to the SA-CERN consortium throughout our work at CERN,” said Mellado.

The electronics board, called the TilePPR, is the basis of a new piece of hardware, named the Tile Calorimeter (TileCal). It will be used in an upcoming upgrade of the ATLAS detector at the Large Hadron Collider (LHC) at CERN, where the Higgs boson was discovered in 2012.

The 16-layer board, made by Trax Interconnect, is believed to be the most complex ever made in South Africa.
The 16-layer board, made by Trax Interconnect, is believed to be the most complex ever made in South Africa.

“This is the next generation of hardware for the ATLAS detector electronics. The Tile Calorimeter is one of the central calorimeters of the ATLAS experiment at the LHC, which is used to measure the energy and direction of the hadrons, jets and tau leptons,” says Mellado.“ This is a great example of how fundamental research that is constantly pushing the boundaries of technical capabilities can directly impact the South African economy.”

The LHC will be upgraded in 2024, in order to increase its instantaneous luminosity. This upgrade has called for a complete redesign of the read-out electronics in the Tile Calorimeter. “The redesign aims at replacing the majority of the on- and off-detector electronics so that all calorimeter signals are digitised and sent to the off-detector electronics,” explains Mellado.

Joyful Mdhluli, who along with 15 other students from the Wits EHEP group, work at CERN on a rotational basis, said her experience manning the CERN-SA stand at ICRI was an exceptional experience. “It gave us an opportunity to share with high school learners what the SA-CERN/Wits-ATLAS group does, and we got an opportunity to expose the learners to a different field of study and the opportunities available for them within the science field,” she says. “There is a shortage of data scientists and it is vital to share our experience with young people to try and motivate them into furthering their studies in this field.”

Specialised equipment had to be imported for the construction of the board, and was kindly funded by the DST. The production of the board proved a challenge because of the high density of planes, as well as the extreme precision needed to link up the electronic circuits throughout its 16 layers. The resulting product was a milestone for the South African electronics industry in that this board is the most sophisticated produced so far.

“TraX had to develop a number of techniques and procedures that now enable them to produce high-density boards efficiently,” says Mellado. “These techniques are now used routinely in commissions.” The company has since increased its employee numbers and is actively involved in skills development and transfer in the South African electronics manufacturing industry. “We used to be able to only produce up to a maximum of eight-layer PCBs, and now, thanks to the design of the TilePPr, we have 16-layer capability,” says Daniel Dock, managing director of TraX.

For more information contact Schalk Mouton, Wits University, +27 (0)11 717 1017, [email protected], www.wits.ac.za





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

From the editor's desk: Is the current AI really what we want?
Technews Publishing Editor's Choice
The companies that develop LLMs need to change direction and concentrate on freeing up our time, not so that we can have more time to do the tasks we don’t want to do in the first place, but rather to allow us more time to do what we love.

Read more...
When it comes to long-term reliability of RF amplifier ICs, focus first on die junction temperature
Altron Arrow Editor's Choice Telecoms, Datacoms, Wireless, IoT
When considering the long-term reliability of integrated circuits, a common misconception is that high package or die thermal resistance is problematic. However, high or low thermal resistance, by itself, tells an incomplete story.

Read more...
ICs vs modules: Understanding the technical trade-offs for IoT applications
NuVision Electronics Editor's Choice DSP, Micros & Memory
As the IoT continues to transform industries, design decisions around wireless connectivity components become increasingly complex with engineers often facing the dilemma of choosing between ICs and wireless modules for their IoT applications.

Read more...
Why bis means business for LTE Cat 1 IoT connections
NuVision Electronics Editor's Choice Telecoms, Datacoms, Wireless, IoT
Tomaž Petaros, product manager IoT EMEA at Quectel Wireless Solutions explains why the market for Cat 1bis IoT connections is getting busy.

Read more...
Interview with Brian Aziz, vice president of global sales, Iridium
Editor's Choice
ridium is the leading satellite IoT player. Their network consists of 66 active low Earth orbit satellites covering every inch of the globe and are used for IoT and emergency services worldwide.

Read more...
Accelerating AI adoption in MCU manufacturing
Editor's Choice AI & ML
To gain the value of ML functionality, designers of MCU-based devices have to adopt a new development method and accept a new type of probabilistic rather than deterministic output.

Read more...
Altron Arrow: Empowering innovation with STMicroelectronics AI processors
Altron Arrow Editor's Choice AI & ML
ST’s AI processors are not only smarter and faster, but also incredibly efficient, enabling a new wave of intelligent solutions across multiple industries.

Read more...
The superpower driving the future of low carbon electricity
Editor's Choice
Modularity is a superpower. The advantage lies in smaller units that can be built, tested, refined, adapted, improved repetitively, allowing many experimentation and learning iterations.

Read more...
Eskom’s evolution sparks hope
Editor's Choice
Eskom’s evolution has sparked hope that a large corporation can change and learn to think outside the grid.

Read more...
Potential risks of plasma treatment on PCBs
MyKay Tronics Editor's Choice
Plasma treatment involves exposing PCBs to an ionised gas, known as plasma, but despite many advantages, several risks must be managed to ensure safe and effective plasma application in EMS.

Read more...