Editor's Choice


How the aerospace and defence sector is shaping the modern world

16 May 2018 Editor's Choice News Integrated Solutions

While large-scale conflict can often result in technological breakthroughs, the pursuit of peace may drive innovation too. This dichotomy has far reaching implications that help shape the modern world.

Mark Patrick.
Mark Patrick.

There are many parallels between the commercial and high-reliability electronics sectors, with a history of cross-fertilisation. The concept of commercial-off-the-shelf (COTS) has existed within the defence sector for several decades, while the design philosophy of open architectures arguably started in Hi-Rel sectors but now pervades the IT industry. Standards exist because large industries like aerospace/defence support a huge number of suppliers that must be able to cooperate yet remain competitive.

The aerospace/defence industry benefits from and helps drive innovation in the global electronics industry. The size of the defence market encourages investment and this can often shape the direction of other markets, while conversely trends like IoT also exert an influence on the way the defence industry develops. This symbiosis means many of the technologies primarily developed for one market will have applications in others, helping to mitigate risk and therefore promote greater overall confidence in R&D spend by semiconductor manufacturers.

Like any other industry, the aerospace/defence sector needs to balance effectiveness with efficiency, and modern developments are apparent here too. In some respects, this sector is at the forefront of technological advancements, such as using augmented reality (AR) and virtual reality (VR) to help supplement having the right expertise in the right place at the right time.

Using AR, it is now possible to have the hands of a soldier in the field being ‘guided’ by a more experienced soldier (who may be located anywhere in the connected world). This not only provides greater expertise in critical situations, but reduces the dependency on a small number of experienced soldiers. The same is true in medicine – where a doctor with expertise in a particular procedure can assist another medical professional, without being present in the same theatre.

Just as with the commercial sector, some of the focus in aerospace/defence is now on the potential of wearable technology, and how it could be used to monitor the health of deployed infantry. New wearable solutions (or more specifically hearable solutions, as they are worn in-ear) provide continuous access to vital statistics such as core body temperature and heart rate, as well as a way of tracking and locating the particular soldier.

This is being enabled by developments like the AFE4410 from Texas Instruments – an ultra-small analog front end (AFE) designed for wearable devices. The device is intended to provide functions including continuous heart rate monitoring and oxygen consumption through optical biosensing. This involves using LEDs and photodiodes, with the AFE4410 simultaneously driving up to three LEDs optimised for biosensing.

The block diagram shown in Figure 1 highlights the main functions: a transimpedance amplifier, ADC, 128-sample FIFO, programmable LED driver and I²C/SPI interface. The highly integrated AFE solution is housed in a 0,4 mm pitch DSBGA package measuring just 2,6 x 2,1 mm.

Figure 1. Functional block diagram for the Texas Instruments AFE4410 AFE.
Figure 1. Functional block diagram for the Texas Instruments AFE4410 AFE.

Satellite positioning is a well known and often cited example of how technology developed for military applications now has a bearing on modern life. Receivers are used in conjunction with mapping software to put advanced navigation at the fingertips of most car or smartphone owners. With several satellite systems now in place, providing redundancy and greater coverage, receiver technology has advanced enough to enable a wider range of applications – such as asset tracking, personal navigation and geotagging.

The MAX2769C from Maxim Integrated is a single-chip universal global navigation satellite system (GNSS) receiver that works across the GPS, Galileo, BeiDou and GLONASS positioning platforms. It integrates a complete receiver chain and measures just 5 x 5 mm (making it small enough to be used in practically anything), while its high level of integration reduces the overall bill-of-materials (BOM). The device can be evaluated using the MAX2769CEVKIT, which is supported by control software and requires no additional circuitry.

Another trend that has had a significant impact in both aerospace/defence and consumer sectors is unmanned aerial vehicles (UAVs), also referred to as drones. The latest developments here see the addition of greater autonomy, which will allow these units to not only self-stabilise but actually determine their own flightpaths. Such drones can be used for reconnaissance and maintenance inspections in dangerous or hazardous environments, or simply to reduce the human effort required.

The Outrider is a prime example. Developed by Lockheed Martin and officially announced at the recent Defence and Security Equipment International Exhibition, this diminutive UAV measures just 10 cm wide and weighs around 1,7 kg. Capable of being launched from a canister, it has been developed for use under conditions where a more conventional, larger-scale UAV deployment wouldn’t be feasible.

The functionality that underpins self-flying drones includes positional awareness. This goes beyond just GPS coordinates, it includes inclination, attitude, rotation, velocity and altitude. Measuring these parameters is enabled through the development of highly accurate sensors, which are increasingly realised through micro electro-mechanical system (MEMS) technology.

MEMS are characterised by their small size and low power, which makes them viable for wearable technology as well as autonomous drones. The integration of multiple MEMS sensors has given rise to a class of device known as inertial measurement units (IMUs). Many of these have been designed specifically for control and navigational systems, like the SCC2230-E02 from Murata, which combines a three-axis accelerometer with a z-axis angular rate sensor (Figure 2 shows a block diagram of the main functions).

Figure 2. Functional block diagram for the Murata SCC2230-E02 IMU.
Figure 2. Functional block diagram for the Murata SCC2230-E02 IMU.

The sensors are manufactured using Murata’s high aspect ratio 3D-MEMS technology. It works by detecting changes in capacitance, caused by moving masses, with changes sensed and processed by the integrated signal conditioning ASIC. All functions are accessed through the SPI interface.

One technology with a long history in aerospace/defence, which is now making its way into other markets, is radar. The automotive industry is moving towards radar for advanced driver assistance system (ADAS) implementation and it will no doubt be instrumental in the progression of self-driving cars. It also has the potential to shape the future of the UAS (unmanned aircraft system)/drone market.

Accessing the technology that enables radar is now easier than ever, thanks to the availability of evaluation platforms such as the EV-RADAR-MMIC2 from Analog Devices. This kit has been developed to give developers access to the ADF5901 24 GHz transmitter, ADF5904 24 GHz receiver and ADF4159 13 GHz PLL, which are all used in the development of frequency modulated continuous wave (FMWC) radar systems.

Recent years have seen an erosion of the invisible barrier separating technologies targeting specific vertical sectors. What was once intended for use in national defence may now be found in every home (think virus protection software or data encryption). While in a similar manner, the technology used to record a person’s sporting activity is now also being employed to monitor a soldier’s vital statistics in the field. As this cutting-edge technology becomes more accessible, we can expect to see new applications emerge that will further encourage cross-fertilisation and even greater innovation.

For more information contact TRX Electronics, authorised Mouser partner in South Africa, +27 (0)12 997 0509, [email protected], www.trxe.com



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

What is Wi-Fi HaLow and why choose it for IoT?
iCorp Technologies Editor's Choice Telecoms, Datacoms, Wireless, IoT
Wi-Fi HaLow introduces a low power connectivity option that, in contrast to other Wi-Fi options, offers greater range of approximately 1 km, which opens up a raft of IoT use cases.

Read more...
Simple battery charger ICs for any chemistry
Altron Arrow Editor's Choice Power Electronics / Power Management
The LTC4162 is a highly integrated, high voltage multi-chemistry synchronous monolithic step-down battery charger and PowerPath manager with onboard telemetry functions and optional maximum power point tracking.

Read more...
The evolution of power management in electronics
TRX Electronics Power Electronics / Power Management
The Mibbo MPS Series metal-encased power supplies deliver solid, efficient power in a durable package that’s built to last.

Read more...
Mouser now shipping onsemi’s image sensors
TRX Electronics Opto-Electronics
The AR0145CS is a 1/4,3-inch CMOS digital image sensor with a 1280 (H) x 800 (V) active-pixel array that can capture both continuous video and single frames.

Read more...
From the editor's desk: Is the current AI really what we want?
Technews Publishing Editor's Choice
The companies that develop LLMs need to change direction and concentrate on freeing up our time, not so that we can have more time to do the tasks we don’t want to do in the first place, but rather to allow us more time to do what we love.

Read more...
When it comes to long-term reliability of RF amplifier ICs, focus first on die junction temperature
Altron Arrow Editor's Choice Telecoms, Datacoms, Wireless, IoT
When considering the long-term reliability of integrated circuits, a common misconception is that high package or die thermal resistance is problematic. However, high or low thermal resistance, by itself, tells an incomplete story.

Read more...
ICs vs modules: Understanding the technical trade-offs for IoT applications
NuVision Electronics Editor's Choice DSP, Micros & Memory
As the IoT continues to transform industries, design decisions around wireless connectivity components become increasingly complex with engineers often facing the dilemma of choosing between ICs and wireless modules for their IoT applications.

Read more...
Why bis means business for LTE Cat 1 IoT connections
NuVision Electronics Editor's Choice Telecoms, Datacoms, Wireless, IoT
Tomaž Petaros, product manager IoT EMEA at Quectel Wireless Solutions explains why the market for Cat 1bis IoT connections is getting busy.

Read more...
Interview with Brian Aziz, vice president of global sales, Iridium
Editor's Choice
ridium is the leading satellite IoT player. Their network consists of 66 active low Earth orbit satellites covering every inch of the globe and are used for IoT and emergency services worldwide.

Read more...
Smart cities and the role of video security
Surveillance Integrated Solutions
As cities around the world continue to embrace smart technology, including IoT that not only connects to people, but also the surrounding activity, the integration of advanced video security systems is crucial to ensure safety and efficiency in environments.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved