mobile | classic
Dataweek Electronics & Communications Technology Magazine

Follow us on:
Follow us on Facebook Share via Twitter Share via LinkedIn


Electronics Buyers' Guide

Electronics Manufacturing & Production Handbook 2019


Choosing the right connector for harsh environments
30 April 2019, This Week's Editor's Pick, Interconnection

In any system, what is the weakest link? If you’re designing for any kind of harsh environment, it may well be the humble connector. That holds true for any application that needs rugged components, whether it’s industrial, mining, transportation, or anything else. In safety-critical systems, any failure can be serious – and potentially fatal.

Mark Patrick.
Mark Patrick.

Connectors are an essential part of any design, whether that is handling analog signals, digital data or power. In many systems, there will be multiple sensors and actuators that must be connected, as well as several sub-systems.

In this article, we’ll look at the environmental factors that can cause connector failure, the different kinds of connector that can survive tough conditions (including the relevant IP ratings), and how you can choose the right connectors for your application – without wasting space and cost by over-specifying.

Protecting against dust and moisture

One of the most likely causes of connector failure is the ingress of moisture or contaminants, such as dust or dirt. Water can get into connectors from the weather, or from cleaning with a hosepipe or other source of flowing water. Cleaning can also introduce chemicals or surfactants, which can corrode electrical conductors, thus at the very least decreasing their ability to carry current, and possibly causing failures.

Moisture can also result from condensation in humid environments, particularly when a device is moved from a cold to a warm environment. Inevitably, water and electricity don’t play nice together – and the result can be damaging short circuits.

Dirt or dust that finds its way into a connector can build up over time to form an insulating layer, which can mean there is a poor quality connection made by a connector. The dust or dirt can also cause overheating.

Ingress protection, or IP, is described by the IEC’s IP standard, IEC 605029, which has become widely used today. This standard uses a two-digit number to show a device’s protection against solid objects (first digit) and liquids (second digit), as shown in Table 1.

Table 1. IEC IP ratings.
Table 1. IEC IP ratings.

For example, IP67 means a device is fully dust-tight and protected against temporary immersion in water. Such protection is achieved with heavy-duty seals and grommets, often made from silicone. Multiple seals can provide redundancy, so ingress protection is maintained even if one seal fails.

As well as the IEC IP rating, another commonly used system for ingress protection is the National Electrical Manufacturers Association (NEMA) ratings. Both the IP and NEMA ratings are usually provided in product data for connectors and enclosures.

Other environmental hazards

In addition to dust and moisture, extremes in temperature can be damaging to connectors – such as the high temperatures experienced in many industrial processes, or in mining, where high ambient temperatures underground contribute to extremes experienced by connectors. Frequent cycling of temperatures from low to high, which is likely to occur in many applications, also causes problems.

Figure 1. Molex LC2 connector.
Figure 1. Molex LC2 connector.

In sub-zero temperatures, there is also the issue of ice to deal with. As water freezes, it expands, which can result in large forces, possibly damaging connectors and cables. The extra weight of ice can also put strain on connectors. When specifying connectors, look for an extended temperature range. For example, for fibre-optic cables, Molex’s LC2 metallic optical connectors (Figure 1) use a metal body that can handle high temperatures up to 150°C.

Connectors can also suffer physical damage, whether that is from an impact or from the effect of vibration – which can cause mechanical failure or damage to electrical connections. All-metal bodies can provide the strength to withstand impacts, while thermoplastic shells will resist corrosion, as well as being flame- and chemical-resistant.

Metal construction can also ensure a connector provides sufficient protection against electrostatic discharge (ESD) and electromagnetic interference (EMI). Another area of mechanical design to consider is strain relief, which ensures any forces applied to the cable or exterior of the connector cannot be passed on to the electrical connection – many connectors provide strain relief as standard.

Figure 2. TE Connectivity CeeLok FAS-T connector.
Figure 2. TE Connectivity CeeLok FAS-T connector.

Suitably rugged connectors will provide the ability to handle vibration, which is defined by standards such as MIL-STD-202. For example, the CeeLok FAS-T Gigabit Ethernet connectors from TE Connectivity (Figure 2) can cope with high degrees of vibration, as well as being IP67-rated and having an operating temperature range of -65°C to +175°C.

Picking the right connector

When choosing a connector, it goes without saying that the first step is to understand the target application and the likely environmental conditions. Plan for the worst case, so you know your connector can withstand whatever is thrown at it.

Once you know what you’re aiming for, any necessary approvals, such as IP67, should be checked on the connector’s datasheet, which will also state the operational temperature range. Also consider any other standards that are required, for example in South Africa, the South African Bureau of Standards (SABS) has developed multiple standards that relate to connectors.

Look for connectors with a secure locking mechanism that can withstand vibration, and that provides confirmation that it is engaged, with an audible noise or tactile response. There are many types of locking method, so make sure you pick one that is appropriate – including planning for how often it will be disconnected and connected in its lifetime. Secondary locks, commonly referred to as wedgelocks, will ensure that contacts are held firmly together.

Picking components that have been tested following a relevant standard, such as MIL-STD-202, is important, to ensure they provide the required robustness over their full lifetime. The standards-based tests use techniques such as ‘highly accelerated life tests’ (HALT) to accurately simulate real-world conditions, and thus ensure product reliability.

On the other hand, do make sure you don’t go too far. The temptation is to over-specify your connectors, but this can mean unneeded costs and space wasted by bulky parts. You may be tempted by the connector with the highest IP rating, when a lower rating is sufficient and cheaper. Similarly, a plastic connector may well be preferable to a more expensive metal connector.


While connectors are sometimes left to last in a system design, they are essential components, and you need to get their selection right. When all the possible permutations are considered, there is a huge range of options, and your best option may well be talking to a distributor who can provide expert technical advice.

For more information on harsh environments, as well as listings of thousands of products and their IP ratings, see

For more information contact TRX Electronics, authorised Mouser independent representative in South Africa, +27 12 997 0509,,

Supplied By: TRX Electronics
Tel: 086 111 2844
Fax: 086 234 6870
  Share on Facebook Share via Twitter Share via LinkedIn    

Further reading:

  • The wireless technologies that will define the IoT era
    25 September 2019, TRX Electronics, Telecoms, Datacoms, Wireless, IoT
    As Internet of Things (IoT) applications proliferate, so do the wireless technologies that enable them. It is hard keeping track, because there are just so many possible options, with a constant stream of updates and further additions to factor in too.
  • Balancing performance, speed and cost for rugged interconnects
    25 September 2019, Avnet South Africa, Interconnection
    System designers want the smallest and lightest possible connectors for use in aerospace and military electronics, while industrial and transportation electronics are expected to deal with the same harsh environments at more competitive cost points.
  • Sealed plastic connectors
    25 September 2019, TRX Electronics, Interconnection
    The UTL series from Souriau is a plastic connector suitable for outdoor industrial applications thanks to a high sealing performance (IP68/IP69K) and an extreme UV resistance with F1 material per UL746C. ...
  • Li-Fi illuminates the way to higher data rates
    28 August 2019, TRX Electronics, Telecoms, Datacoms, Wireless, IoT
    Radio spectrum is a precious resource and it quickly gets filled up. It did not take long for users of Wi-Fi in urban areas to understand how interference from nearby routers would affect the communications ...
  • Sealed plastic connectors
    28 August 2019, TRX Electronics, Interconnection
    The UTL series from Souriau is a plastic connector suitable for outdoor industrial applications thanks to a high sealing performance (IP68/IP69K) and an extreme UV resistance with F1 material per UL746C. ...
  • Connectors for automotive electronics
    31 July 2019, TRX Electronics, Switches, Relays & Keypads
    TE Connectivity’s HDSCS connector series is designed to meet the rigorous demands of the commercial vehicle industry and off-road applications that require high standards of performance. Made from a rugged ...
  • Cost-effective tools for makers and small businesses to innovate
    31 July 2019, TRX Electronics, Test & Measurement
    In addition to professional engineers, makers and hobbyists are now able to contribute significantly to innovation in our modern world – as they can develop ideas with passion and without the financial and logistical constraints that often stifle ideas in large corporations.
  • AI on a chip
    26 June 2019, News, This Week's Editor's Pick
    Researchers have created a machine learning library programmed in C that can run on microcontrollers, and on other platforms such as PCs, Raspberry PI and Android.
  • Better thermal management enabled by advances in semiconductor packaging
    26 June 2019, TRX Electronics, Power Electronics / Power Management, This Week's Editor's Pick
    Beyond the realm of traditional thermal management solutions, the latest IC packaging technologies are making a significant contribution to satisfying the exacting thermal demands of modern electronic designs.
  • Solar-powered bakery developed at UJ
    26 June 2019, Power Electronics / Power Management, This Week's Editor's Pick
    When used as a tool for community development, the Solar Bread Box becomes a self-sustaining, economy stimulating, job creating and skills development platform.
  • Compression lugs and splices
    26 June 2019, TRX Electronics, Interconnection
    Panduit Pan-Lug compression connectors provide permanent terminations for a variety of power and grounding applications. The connectors are designed for use with many different code and flex conductor ...
  • How to design AC-DC power supplies for long life
    26 June 2019, Accutronics, Power Electronics / Power Management, This Week's Editor's Pick
    There are many things that impact the life of a power supply, overstressed components being the main one. All components have a life that is affected by temperature; some components are more strongly ...

Technews Publishing (Pty) Ltd
1st Floor, Stabilitas House
265 Kent Ave, Randburg, 2194
South Africa
Publications by Technews
Dataweek Electronics & Communications Technology
Electronics Buyers’ Guide (EBG)

Hi-Tech Security Solutions
Hi-Tech Security Business Directory

Motion Control in Southern Africa
Motion Control Buyers’ Guide (MCBG)

South African Instrumentation & Control
South African Instrumentation & Control Buyers’ Guide (IBG)
Terms & conditions of use, including privacy policy
PAIA Manual


    Classic | Mobile

Copyright © Technews Publishing (Pty) Ltd. All rights reserved.