Editor's Choice


Choosing the right connector for harsh environments

30 April 2019 Editor's Choice Interconnection

In any system, what is the weakest link? If you’re designing for any kind of harsh environment, it may well be the humble connector. That holds true for any application that needs rugged components, whether it’s industrial, mining, transportation, or anything else. In safety-critical systems, any failure can be serious – and potentially fatal.

Mark Patrick.
Mark Patrick.

Connectors are an essential part of any design, whether that is handling analog signals, digital data or power. In many systems, there will be multiple sensors and actuators that must be connected, as well as several sub-systems.

In this article, we’ll look at the environmental factors that can cause connector failure, the different kinds of connector that can survive tough conditions (including the relevant IP ratings), and how you can choose the right connectors for your application – without wasting space and cost by over-specifying.

Protecting against dust and moisture

One of the most likely causes of connector failure is the ingress of moisture or contaminants, such as dust or dirt. Water can get into connectors from the weather, or from cleaning with a hosepipe or other source of flowing water. Cleaning can also introduce chemicals or surfactants, which can corrode electrical conductors, thus at the very least decreasing their ability to carry current, and possibly causing failures.

Moisture can also result from condensation in humid environments, particularly when a device is moved from a cold to a warm environment. Inevitably, water and electricity don’t play nice together – and the result can be damaging short circuits.

Dirt or dust that finds its way into a connector can build up over time to form an insulating layer, which can mean there is a poor quality connection made by a connector. The dust or dirt can also cause overheating.

Ingress protection, or IP, is described by the IEC’s IP standard, IEC 605029, which has become widely used today. This standard uses a two-digit number to show a device’s protection against solid objects (first digit) and liquids (second digit), as shown in Table 1.

Table 1. IEC IP ratings.
Table 1. IEC IP ratings.

For example, IP67 means a device is fully dust-tight and protected against temporary immersion in water. Such protection is achieved with heavy-duty seals and grommets, often made from silicone. Multiple seals can provide redundancy, so ingress protection is maintained even if one seal fails.

As well as the IEC IP rating, another commonly used system for ingress protection is the National Electrical Manufacturers Association (NEMA) ratings. Both the IP and NEMA ratings are usually provided in product data for connectors and enclosures.

Other environmental hazards

In addition to dust and moisture, extremes in temperature can be damaging to connectors – such as the high temperatures experienced in many industrial processes, or in mining, where high ambient temperatures underground contribute to extremes experienced by connectors. Frequent cycling of temperatures from low to high, which is likely to occur in many applications, also causes problems.

Figure 1. Molex LC2 connector.
Figure 1. Molex LC2 connector.

In sub-zero temperatures, there is also the issue of ice to deal with. As water freezes, it expands, which can result in large forces, possibly damaging connectors and cables. The extra weight of ice can also put strain on connectors. When specifying connectors, look for an extended temperature range. For example, for fibre-optic cables, Molex’s LC2 metallic optical connectors (Figure 1) use a metal body that can handle high temperatures up to 150°C.

Connectors can also suffer physical damage, whether that is from an impact or from the effect of vibration – which can cause mechanical failure or damage to electrical connections. All-metal bodies can provide the strength to withstand impacts, while thermoplastic shells will resist corrosion, as well as being flame- and chemical-resistant.

Metal construction can also ensure a connector provides sufficient protection against electrostatic discharge (ESD) and electromagnetic interference (EMI). Another area of mechanical design to consider is strain relief, which ensures any forces applied to the cable or exterior of the connector cannot be passed on to the electrical connection – many connectors provide strain relief as standard.

Figure 2. TE Connectivity CeeLok FAS-T connector.
Figure 2. TE Connectivity CeeLok FAS-T connector.

Suitably rugged connectors will provide the ability to handle vibration, which is defined by standards such as MIL-STD-202. For example, the CeeLok FAS-T Gigabit Ethernet connectors from TE Connectivity (Figure 2) can cope with high degrees of vibration, as well as being IP67-rated and having an operating temperature range of -65°C to +175°C.

Picking the right connector

When choosing a connector, it goes without saying that the first step is to understand the target application and the likely environmental conditions. Plan for the worst case, so you know your connector can withstand whatever is thrown at it.

Once you know what you’re aiming for, any necessary approvals, such as IP67, should be checked on the connector’s datasheet, which will also state the operational temperature range. Also consider any other standards that are required, for example in South Africa, the South African Bureau of Standards (SABS) has developed multiple standards that relate to connectors.

Look for connectors with a secure locking mechanism that can withstand vibration, and that provides confirmation that it is engaged, with an audible noise or tactile response. There are many types of locking method, so make sure you pick one that is appropriate – including planning for how often it will be disconnected and connected in its lifetime. Secondary locks, commonly referred to as wedgelocks, will ensure that contacts are held firmly together.

Picking components that have been tested following a relevant standard, such as MIL-STD-202, is important, to ensure they provide the required robustness over their full lifetime. The standards-based tests use techniques such as ‘highly accelerated life tests’ (HALT) to accurately simulate real-world conditions, and thus ensure product reliability.

On the other hand, do make sure you don’t go too far. The temptation is to over-specify your connectors, but this can mean unneeded costs and space wasted by bulky parts. You may be tempted by the connector with the highest IP rating, when a lower rating is sufficient and cheaper. Similarly, a plastic connector may well be preferable to a more expensive metal connector.

Conclusion

While connectors are sometimes left to last in a system design, they are essential components, and you need to get their selection right. When all the possible permutations are considered, there is a huge range of options, and your best option may well be talking to a distributor who can provide expert technical advice.

For more information on harsh environments, as well as listings of thousands of products and their IP ratings, see www.mouser.co.za/applications/harsh-environment-technology/

For more information contact TRX Electronics, authorised Mouser independent representative in South Africa, +27 12 997 0509, [email protected], www.trxe.com



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Active event tracking using a novel new technique
Editor's Choice
SPAES (single photon active event sensor) 3D sensing, developed by VoxelSensors, is a breakthrough technology that solves current critical depth sensing performance limitations for robotics applications.

Read more...
ABB commits to a more inclusive future as it empowers women and youth in engineering
ABB South Africa Editor's Choice
Through structured development, inclusive hiring, and focused empowerment, ABB Electrification is shaping a more equitable and dynamic future for the engineering industry.

Read more...
Unlocking the next frontier – women leading digital transformation in South Africa’s technology sector
Editor's Choice
As South Africa celebrates Women’s Month, it is an ideal time to reflect on the critical role women are playing in shaping the country’s technology sector.

Read more...
Why GNSS positioning precision is enabling the next wave of IoT applications
iCorp Technologies Editor's Choice Telecoms, Datacoms, Wireless, IoT
While high-performance GNSS implementations are achievable with few limitations, most real-world applications must balance power consumption, form factor and accuracy requirements.

Read more...
5G RedCap: Unlocking scalable IoT connectivity
iCorp Technologies Editor's Choice Telecoms, Datacoms, Wireless, IoT
As 2G and 3G networks rapidly sunset across the globe, the Internet of Things (IoT) market faces a critical challenge: how to maintain reliable cellular connectivity without the complexity or cost of full 5G.

Read more...
Is RFoIP technology the future for signal transportation for Satcom applications?
Accutronics Editor's Choice Telecoms, Datacoms, Wireless, IoT
RFoF technology continues to be used for successful IF signal transportation in the ground segment and there is widespread belief that it will be for some time to come, especially for critical communications applications.

Read more...
Celebrating innovation, leadership, and the next generation
Editor's Choice
In electronics and engineering, women are not just participating; they are transforming, innovating, and shaping the future.

Read more...
Women leading the charge in SA’s energy sector
Editor's Choice
While historically male-dominated, the energy industry is slowly but surely opening its doors to more diverse voices and talents.

Read more...
High performance SDR design considerations
RFiber Solutions Editor's Choice DSP, Micros & Memory
As the spectrum gets increasingly crowded, and adversaries more capable, the task of examining wide bands and making sense of it all, while not missing anything, gets harder.

Read more...
Microtronix revives defunct cell phone plant
Microtronix Manufacturing Editor's Choice Manufacturing / Production Technology, Hardware & Services
In a significant move for South Africa’s struggling electronics manufacturing sector, local technology firm Microtronix has breathed new life into a formerly defunct cell phone manufacturing facility.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved