DSP, Micros & Memory


Complex domain VLIW DSP core delivers 1 GFlops at 100 MHz

16 July 2003 DSP, Micros & Memory

Atmel has introduced mAgic, which it says is the world's first complex domain, extended precision very long instruction word (VLIW) DSP core for SoC implementation. The mAgic core provides single-cycle execution of complex arithmetic operations, such as FFT butterflies and vector2 arithmetic.

The company says that complex arithmetic is used to execute differential calculations and adaptive beam forming algorithms that are used in applications such as high-quality hands free audio conferencing, physical modelling of musical instruments and the inner ear, spectrum analysis, audio encoding/decoding, missile guidance control, auto collision avoidance and radar. These applications typically require GFLOPS-plus throughput.

Traditionally, DSP makers respond to higher throughput requirements by increasing clock frequencies, which increases power consumption and heat dissipation. Atmel says that it has taken the novel approach of creating a new DSP architecture that delivers GFLOPS-plus throughput at a low clock frequency, which dramatically simplifies SoC timing closure and reduces the need for pipelining. The mAgic DSP executes 15 operations per cycle in parallel, and, at only 100 MHz, delivers 1,5 billion operations per second (GOPS), of which 1 billion are floating point. The core's 40-bit precision provides a 32-bit mantissa (eg, for high quality audio and matrix inversion stability) and an 8-bit exponent field. Competing GFLOPS-plus DSPs require more than twice the clock frequency of mAgic and consume three times more power. For example, the TMS320C67 requires 14 400 cycles and 3X the power to perform an FFT on 1024 elements, while the mAgic DSP requires only 5962 cycles for the same calculation, claims Atmel.

The mAgic VLIW DSP architecture is the result of 20 years of research conducted by Pier Stanislao Paolucci, mAgic architect and Permanent Researcher at the Italian National Institute of Nuclear Physics (INFN), and by key mAgic designers who participated in the Massively Parallel Processing Project, (APE) VLIW architectures have massively parallel processing structures and long instruction words that allow multiple operations to be executed in a single instruction cycle. Atmel manufactures the VLIW ASICs designed for the TERAFLOPS systems of INFN. The mAgic DSP core is now being offered as a library element, usable by Atmel's other ASIC customers.

Atmel's complex domain, floating point mAgic DSP core is being offered for immediate SoC implementation. Atmel offers qualified customers a SoC Prototyping and Emulation Platform (PEP) board for immediate system prototyping, emulation and early code development.

For more information contact Arrow Altech Distribution, 011 923 9600, Memec SA, 011 897 8600, or EBV-Electrolink, 021 421 5350.



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Adaptive optics’ power solution
Altron Arrow Opto-Electronics
Vicor power-dense adaptive optical modules enable colossal telescopes to look into the past for deep space discoveries.

Read more...
First NVMe SSD Built with 8th-gen BiCS FLASH
EBV Electrolink Computer/Embedded Technology
KIOXIA recently announced the development and prototype demonstration of its new KIOXIA CM9 Series PCIe 5.0 NVMe SSDs, which incorporates CMOS directly Bonded to Array technology.

Read more...
MCU for low-power, IoT applications
NuVision Electronics DSP, Micros & Memory
Silicon Labs recently announced the PG26, a general-purpose microcontroller with a dedicated matrix vector processor to enhance AI/ML hardware accelerator speeds.

Read more...
Wide input voltage buck-boost converter
Altron Arrow Power Electronics / Power Management
The MAX77859 from Analog Devices is a high-efficiency, high-performance buck-boost converter targeted for systems requiring a wide input voltage range of between 2,5 and 22 V.

Read more...
IMU with dual-sensing capability
EBV Electrolink Analogue, Mixed Signal, LSI
ST’s 6-axis inertial measurement unit integrates a dual accelerometer up to 320g and embedded AI for activity tracking and high-impact sensing.

Read more...
High-density power module for AI at the edge applications
Altron Arrow Power Electronics / Power Management
The MCPF1412 power module from Microchip has integrated I2C and PMBus interfaces for flexible configuration and monitoring.

Read more...
EEPROMs for industrial and military markets
Vepac Electronics DSP, Micros & Memory
Designed to ensure the data retention and the secure and safe boot of digital systems, the memory product line includes small and medium density EEPROMs from 16 kb to 1 Mb.

Read more...
When it comes to long-term reliability of RF amplifier ICs, focus first on die junction temperature
Altron Arrow Editor's Choice Telecoms, Datacoms, Wireless, IoT
When considering the long-term reliability of integrated circuits, a common misconception is that high package or die thermal resistance is problematic. However, high or low thermal resistance, by itself, tells an incomplete story.

Read more...
PLCnext – Open, IIoT-ready industrial platform
IOT Electronics DSP, Micros & Memory
PLCnext can be used alongside an existing PLC system, collecting control system data via EtherNet/IP, PROFINET, or MODBUS, and can push this information to a cloud instance.

Read more...
ICs vs modules: Understanding the technical trade-offs for IoT applications
NuVision Electronics Editor's Choice DSP, Micros & Memory
As the IoT continues to transform industries, design decisions around wireless connectivity components become increasingly complex with engineers often facing the dilemma of choosing between ICs and wireless modules for their IoT applications.

Read more...