Telecoms, Datacoms, Wireless, IoT


Good reasons to use short-range RF for sensor monitoring

9 February 2005 Telecoms, Datacoms, Wireless, IoT

With the skyrocketing cost of wiring and the growing demand for distributed and remote sensing, data acquisition and control, the role of wireless communications only gets bigger. Sensor manufacturers are integrating RF systems in the same enclosure as their sensing devices. Datalogger vendors are beginning to turn to wireless communications to enhance their products. And wireless networks are taking their place right next to traditional hardwired configurations. The industry is moving toward the implementation of networks of wireless sensors that can operate in demanding environments and provide clear advantages in cost, size, power, flexibility, and distributed intelligence.

The benefits of RF

Wireless communication is a viable and cost-effective method of transmitting data over long distances, through electrically noisy environments, and from hostile locations. The reliability and flexibility of advanced wireless technology warrants serious consideration for many industrial applications. By becoming acquainted with the capabilities of this useful tool, OEMs can take advantage of the technology in the more challenging sensor environments and reap cost and performance benefits that rival those of hardwired systems. Advantages:

* Speeds installation and reduces cost.

* Operates in RF-dense environments.

* Tolerates extended temperatures (-40 to +80°C).

* Small form factor fits inside space-constrained enclosures.

* Less invasive than cable installation.

Description of integration and use

The central component of a typical RF data acquisition (DA) system is the RF transceiver. The remote-station modem is connected to an RS232 port of a data- logger, DA front-end, or other DA device. This modem then transmits data to a base station modem connected in most cases to an RS232 port on a computer. AeroComm's ConnexRF modems are addressable and can be configured to communicate in various topologies to suit application requirements. The range of the transceivers is influenced by such factors as signal path, frequency band, multipath propagation (fading), transmission line loss, and antenna height and gain.

Developing a wireless DA system that uses more than one modem pair requires some form of system integration. AeroComm's familiarity with RF DA ensures proper selection of equipment, installation, software interfacing, and adherence to FCC regulations.

A key element of RF DA system design is a site survey, which reveals the strengths and weaknesses of a proposed location and determines appropriate modem locations, antenna systems, and potential error rates. At a minimum, a site survey should include a test of signal path propagation at the proposed location and frequency of operation, a frequency search for existing users, and a review of data throughput requirements. AeroComm's Design Kit can significantly simplify this effort for the OEM.

The cost-effectiveness of an RF DA link can be determined by comparing its cost against that of other approaches, such as installing hardwired DA systems, sending personnel periodically to collect data from remote locations, using fibre-optic links in high-EMI areas, or leasing telephone lines for long distances. Wireless DA links prove to be an excellent cost alternative to hardwired systems, as projected costs of cable, conduit, and trenching greatly exceed the cost of an RF modem pair.

Typical applications

RF DA systems are particularly effective in applications requiring acquisition of data from locations some distance away or from environments known to have high levels of EMI. For example, power generating plants and distribution stations use spread spectrum RF DA to monitor generating equipment and switching systems in high-EMI areas within plants.

On some systems, such as high-voltage platforms, cabling DA equipment to ground is not possible because of high potential differences. Spread spectrum modems connected to dataloggers and a PC can relay information in realtime from high-voltage platforms and distribution switches to control rooms to monitor equipment status.

Appliance manufacturers save time by using RF DA on moving assembly lines to test equipment performance during the manufacturing process. Appliances are monitored for performance as they move through various stages of manufacture. RF DA systems continually send information to production and quality stations that identify and track units that may need further inspection.

Automotive companies and alternative vehicle research groups use RF DA systems to monitor mobile vehicle tests during development. Using DA equipment connected to key points on a test vehicle and a global positioning system receiver, research teams can monitor performance under actual running conditions.



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Industrial Ethernet time sensitive networking switch
RS South Africa Telecoms, Datacoms, Wireless, IoT
The ADIN3310 and ADIN6310 are 3-port and 6-port Gigabit Ethernet time sensitive networking (TSN) switches with integrated security primarily designed for industrial Ethernet applications.

Read more...
When it comes to long-term reliability of RF amplifier ICs, focus first on die junction temperature
Altron Arrow Editor's Choice Telecoms, Datacoms, Wireless, IoT
When considering the long-term reliability of integrated circuits, a common misconception is that high package or die thermal resistance is problematic. However, high or low thermal resistance, by itself, tells an incomplete story.

Read more...
Automotive-grade digital isolators
Telecoms, Datacoms, Wireless, IoT
The NSI83xx series of capacitive-based isolators from NOVOSENSE Microelectronics offer superior EOS resilience and minimal power noise susceptibility.

Read more...
Why bis means business for LTE Cat 1 IoT connections
NuVision Electronics Editor's Choice Telecoms, Datacoms, Wireless, IoT
Tomaž Petaros, product manager IoT EMEA at Quectel Wireless Solutions explains why the market for Cat 1bis IoT connections is getting busy.

Read more...
Wi-Fi in 2025: When is Wi-Fi 7 the answer?
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Wi-Fi 7 introduces multi-link operation and lower latency, a game-changing feature that allows devices to transmit and receive data across multiple frequency bands simultaneously to significantly reduce network congestion.

Read more...
Bluetooth Lite SoCs purpose built for IoT
NuVision Electronics Telecoms, Datacoms, Wireless, IoT
Whether it is enabling predictive maintenance on industrial equipment, tracking assets in dense environments, or running for years on a coin cell battery in ultra-low power sensors, developers need solutions that are lean, reliable, and ready to scale with emerging use cases.

Read more...
LTE Cat 1bis module
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
The A7673X LTE Cat 1bis module from SimCom is engineered to meet the growing demands of the IoT industry, offering exceptional performance and seamless integration.

Read more...
Track with precision
Electrocomp Telecoms, Datacoms, Wireless, IoT
KYOCERA AVX provides innovative antennas for cellular, LTE-M, NB-IoT, LoRa, GNSS, BLE, UWB, Wi-Fi, and future Satellite IoT.

Read more...
Wi-Fi 7 front-end module
RF Design Telecoms, Datacoms, Wireless, IoT
The Qorvo QPF4609 is an integrated front end module designed for 802.11be systems that has integrated matching, which minimises layout area.

Read more...
Multi-channel downconverter
Vepac Electronics Telecoms, Datacoms, Wireless, IoT
The Downconverter from Crane Aerospace is a converter that operates from 2 to 18 GHz and delivers a noise figure of 11 dB with an attenuation range of 25 dB.

Read more...