Power Electronics / Power Management


What to consider when choosing a hot-swap controller IC

18 October 2006 Power Electronics / Power Management

Inserting or removing a circuit board from a live backplane can cause damaging transients unless appropriate design considerations are taken.

ITraditional solutions have used an integrated circuit (IC) with an external MOSFET. With board space at a premium, especially in telecom, networking or any application where the board dimensions are fixed, a more integrated solution is a must have. Negative voltage hot swap (NVHS) controllers that integrate the switch MOSFET, not only save the space of the large switch, but also reduce the number of external components such as sense resistors. The NVHS IC protects the board from transients that can occur during hot-swapping and reduces the board space required for this power management function freeing-up space for adding additional functions that differentiate the board.

What happens without hot-swap protection

When a circuit board is inserted into or removed from a live backplane, the filter or bypass capacitors that are being charged or discharged at the input of the board's power module or switching power supply can cause large transient currents. These currents can cause severe and permanent damage to the board making the system unstable. In addition, the repairs can cause costly warranty problems and downtime. The waveform with the transient that can occur in an unprotected system is shown in Figure 1a.

Figure 1. Waveforms showing (a) the transient from a hot-swap event  reaching an unsafe value of more than 55 A and (b) protected results using the MC34652 Hot Swap Power Management IC where the inrush current was limited to 100 mA
Figure 1. Waveforms showing (a) the transient from a hot-swap event reaching an unsafe value of more than 55 A and (b) protected results using the MC34652 Hot Swap Power Management IC where the inrush current was limited to 100 mA

What happens with hot-swap protection

With a hot-swap IC, when the board is inserted into the live backplane, inrush current is limited and the power is ramped to the load in a managed way. This shields the bypass capacitors from sudden application of power, hence preventing fast and uncontrollable transients. Figure 1b shows how well the power is managed and inrush current is controlled using a hot-swap.

Space considerations

With the goal of saving board space as one of the primary considerations, selecting the right package is one of the most important silicon design decisions. If the complete circuitry could fit in something as small as an 8-pin SOIC (a high volume, cost-effective package with established reliability) then the solution will satisfy key requirements in integration and cost. The eight pins would also allow additional functions to be provided. The case outline of the SOIC-8 package is a maximum 5 x 6,2 mm (31 mm²). By not having to add an external FET in either a SOT-223 (6,7 x 7,29 mm = 48,8 mm²) or a DPAK (6,73 x 10,42 mm = 70,1 mm²), a minimum of about 61% (neglecting the interconnections) and as much as 69% space could be saved for this function since the DPAK is over twice the size of the SOIC-8.

A top-of-the-line mixed-signal silicon process can be used to integrate the digital logic and precision analog circuitry with a highly efficient, low RDS(ON) power MOSFET. This allows for integration of circuitry that not only provides the hot-swap function but also other very important and key features for a hot-swap controller to perform its function optimally. Some of these features include programmable over-current limit, programmable charging current limit, start-up and retry delay timer, over-voltage and under-voltage detection, active high and/or low power good output signals, a disable input with active-low or active-high capability, and thermal shutdown. The efficient mixed signal process allows for all of this to be included in an SOIC-8 package.

An integrated hot-swap solution

With the hot-swap function being a customer expectation in many applications, the designer's role in implementing this function should be minimal, so he/she can focus on design aspects that differentiate their product. However, the potential damage from a hot-swap event can cause significant customer dissatisfaction so the designer must provide a robust design for this function. An integrated solution in a proven, high volume package solves this dilemma.

For those applications that require programmability for over/under-voltage and start-up timer or up to 2,25 A current-limiting capability, Freescale's MC34652 provides a most versatile solution. Selecting the appropriate resistor values allows the designer to customise the over/under-voltage, the setting of the delay timer, the value and rise time of the charging current, ICHG and the value of the overcurrent limit to satisfy the needs of a fully integrated hot-swap system.

These additional functions require a 16-pin SOIC. However, if the application requirements are very straightforward, Freescale's MC34653 provides the NVHS function in an SOIC 8-pin package.



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Dual-range IMU with edge processing
EBV Electrolink Analogue, Mixed Signal, LSI
ST’s innovative LSM6DSV80X combines two accelerometer structures for 16 g and 80 g full-scale sensing, a gyroscope up 4000 dps, and embedded intelligence in a single component.

Read more...
Ultra-low-power wireless module
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The STM32WBA5MMG from STMicroelectronics is an ultra-low-power, small form factor, certified 2,4 GHz wireless module that supports Bluetooth LE, Zigbee 3.0, OpenThread, and IEEE 802.15.4 proprietary protocols.

Read more...
Powering Innovation eBook: Changing what’s possible
Power Electronics / Power Management
This exclusive read, entitled ‘Changing what’s Possible,’ delves into how power dense Vicor modules enable many world-changing innovations across various sectors.

Read more...
16-channel multicell battery monitor
Altron Arrow Power Electronics / Power Management
The ADBMS6830B is a multicell battery stack monitor that measures up to 16 series-connected battery cells with a lifetime total measurement error of less than 2 mV.

Read more...
Reliable redundancy with the Mibbo M3DN Series
Conical Technologies Power Electronics / Power Management
Designed for use with two parallel-connected power supplies, the M3DN Series allows for true redundancy, making it ideal for mission-critical applications.

Read more...
Automotive power-over-coax inductor
RS South Africa Power Electronics / Power Management
TDK has launched the ADL8030VA, a high-performance inductor designed specifically for power-over-coaxial applications.

Read more...
Rugged PSU for challenging conditions
Conical Technologies Power Electronics / Power Management
Built for rugged reliability, the Mibbo MFC Series delivers stable, efficient power in environments where moisture, dust, and temperature extremes are everyday challenges.

Read more...
Enhance SiC device efficiency using merged-pin Schottky diodes
NuVision Electronics Editor's Choice Power Electronics / Power Management
Silicon carbide (SiC) has advantages over silicon (Si) that make it particularly suitable for Schottky diodes in applications such as fast battery chargers, photovoltaic (PV) battery converters, and traction inverters.

Read more...
15 W power module with wide input range
Brabek Power Electronics / Power Management
RECOM’s miniature power modules provide 15 W output and operate over a wide input range of 18-264 V AC or 18-375 V DC.

Read more...
Industrial-grade DIN rail PSU
Conical Technologies Power Electronics / Power Management
The Mibbo MTR960W is a reliable and cost-effective PSU option that delivers a solid 960 W of output power at 24?or 48 V DC.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved