Design Automation


Demo system integrates motor control and networking functions

31 October 2007 Design Automation

As microprocessor-based motor control moves toward ubiquity, the case for intelligently networking those controls becomes apparent.

Luminary Micro's Stellaris microcontrollers not only enable sophisticated motor controls, but also provide networking capabilities to build small and large scale device networks. These networking capabilities allow a distributed approach to complex control problems by placing intelligence at the point of control. This can improve latency, accuracy, reliability and security - important considerations in realtime control systems. Network application examples include a small controller area network (CAN) in an electric wheelchair, a factory production line and an Internet-controlled pipeline pumping system.

The Automation System Demo (Figure 1) available from Luminary represents a typical automation system, with many time-critical inputs and outputs working together over networks. Seven control boards, using a total of three different Stellaris microcontroller family members, operate the distributed control system. CAN is used for board-to-board communication, while Ethernet provides a web interface to a local computer or to the Internet.

Figure 1. The Automation System Demo setup
Figure 1. The Automation System Demo setup

Operational overview

The demo system has two conveyor belts and four robotic arms (see Figure 1). A complex motion sequence transfers and stacks wood blocks in continuous circulation. The overall process is configured and monitored by an embedded Web server running on a Stellaris EK-LM3S8962 evaluation board. Embedded Web server technology enables any authorised person with access to the World Wide Web to view and control system operation.

A brushless DC (BLDC) motor operates each conveyor belt. A 75:1 gearbox reduces shaft speed and enables conveyor speeds between 5 centimetres/second and 10 centimetres/second. BLDC motors are synchronous machines, so the motor shaft position, velocity and belt speed are directly controlled by the BLDC motor control. Four robotic arms, located in a row between the conveyor belts, are responsible for moving blocks as they move along the conveyor belts. See Figure 2 for a detailed view of the system. The arms have six axes of motion; each axis is actuated by a servo motor that allows approximately 180ø of joint rotation.

The system comprises seven circuit boards interconnected using a CAN bus:

* Two BLDC motor controls (one for each conveyor belt).

* Four servo control boards (one for each robotic arm).

* One EK-LM3S8962 evaluation board.

The servo and BLDC motor control boards each incorporate a Stellaris microcontroller for local intelligence and CAN interfacing. The evaluation board's primary role is to serve as a bridge between the motor and servo control boards on the CAN bus, and the user information transmitted over the Ethernet interface. The Automation System Demo also implements a graphical control console which uses the evaluation board as an embedded Web server.



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

STM32Cube MCU package for STM32WBA
Design Automation
The STM32CubeWBA utility gathers in one single package all generic embedded software components required to develop an application on STM32WBA series microcontrollers.

Read more...
Why LabVIEW is critical to South Africa’s automation future
Design Automation
[Sponsored] In a world increasingly defined by connected systems, edge intelligence, and accelerating automation, the ability to build scalable, responsive, and maintainable engineering applications has never been more essential, and at the heart of this evolution lies LabVIEW.

Read more...
Take analogue designs from idea to reality
Design Automation
Bringing your analogue design ideas to life is simple with Microchip’s Analog Development Tool Ecosystem, part of its extensive range of solutions for both analogue and digital engineers.

Read more...
Accurate power estimation
Design Automation
AMD Power Design Manager 2025.1 is now available – with support for AMD Versal AI Edge and Prime Series Gen 2 SoCs and production support for AMD Spartan UltraScale+ devices.

Read more...
AMD Vivado Design Suite 2025.1
Design Automation
AMD Vivado Design Suite 2025.1 is here, and now with support for AMD Spartan UltraScale+ and next-generation Versal devices.

Read more...
Enhance SiC device efficiency using merged-pin Schottky diodes
NuVision Electronics Editor's Choice Power Electronics / Power Management
Silicon carbide (SiC) has advantages over silicon (Si) that make it particularly suitable for Schottky diodes in applications such as fast battery chargers, photovoltaic (PV) battery converters, and traction inverters.

Read more...
Redefining entry-level MCUs
NuVision Electronics DSP, Micros & Memory
The company positions the GD32C231 series as a ‘high-performance entry-level’ solution designed to offer more competitive options for multiple applications.

Read more...
Siemens streamlines design of integrated 3D ICs
Design Automation
Siemens Digital Industries Software recently introduced two new solutions to its EDA portfolio.

Read more...
Webinar: Designing in a connected environment
Design Automation
With Altium Designer and its data management platform, the team will always be up to date with the latest design documents and be able to comment on schematic, PCB, BOM and assembly drawings.

Read more...
MCU for low-power, IoT applications
NuVision Electronics DSP, Micros & Memory
Silicon Labs recently announced the PG26, a general-purpose microcontroller with a dedicated matrix vector processor to enhance AI/ML hardware accelerator speeds.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved