Manufacturing / Production Technology, Hardware & Services


New handheld hybrid rework system - Part 1

16 April 2008 Manufacturing / Production Technology, Hardware & Services

This article looks at some of the technical issues and market requirements behind this new technology, which embraces the term 'hybrid' as more than just a marketing slogan.

Looking back to the 'leaded age'

During the days of tin-lead alloys when SMDs were externally leaded devices, rework and repair of such components could be undertaken without too much difficulty. Both contact heating systems, such as soldering irons and heated tweezers, and non-contact systems such as hot air guns, were viable alternatives for bench-top rework. The process control requirements for such systems were not particularly high as the soldering processes and components themselves were, for the most part, 'forgiving'.

Since the introduction, however, of ball grid array (BGA) components, the rules for rework have changed significantly. Non-contact heating technologies were the only option for exchanging such components and hot air systems were the accepted state of the art.

In 1997, ERSA entered the BGA rework market with the launch of a completely new technology designed specifically for reworking area array devices. Rework specialists could now choose between the commonly-used hot air systems and ERSA's new, medium wavelength IR systems.

Traditional convection systems bundle the heat energy more strongly via the hot air nozzle and thus achieve somewhat faster cycle times. Medium wavelength infrared radiation on the other hand, guarantees uniform heat distribution across the BGA package and is characterised as a slower and safer process.

New, lead-free components

The ever increasing demands on today's electronic assembly have not only targeted the components but also the alloys. The introduction of lead-free solders represents a milestone for both production and repair equipment requirements. Modern rework systems are faced with the following challenges:

* Efficient soldering and desoldering of target components without damaging them (as per IPC requirements at a maximum. temperature gradient of 4°C/s).

* Bringing the heat energy onto the target component in as focused a manner as possible without influencing or destroying neighbouring parts and/or substrates.

* Creating stable, reproducible and documentable processes.

* Simple but modular operating concept for both beginner and professional users.

The smaller process windows and higher process temperatures of lead-free soldering place ever greater demands on contemporary rework systems. More power on the one hand (in order to handle higher temperatures) and more control for temperature-sensitive components on the other hand, is a paradox in itself and is an extremely difficult balancing act to manage.

When it comes to handheld, hot air guns, there is the ever present problem of unintentionally overheating and blowing away an adjacent small chip during the repair. On the other hand, many large companies are banning contact heat methods with hot tweezers for rework due to the possibility of thermally shocking small ceramic condensers. Given these two extremes, how should or could safe repair of 0402 and 0201 components now be achieved?

Today's technical requirements for a compact bench-top rework system

The technical requirements can be divided into three groups: 'absolutely essential', 'highly practical' and 'nice to have but not essential'. The requirements for 'absolutely essential' include: fast rework cycle, low cost of system and small size, option of implementing a repair in the unit housing, flexibility and process security. The requirements for 'highly practical' are: process stability and repeatability, simple operation and simple operator training. The 'nice to have but not essential' requirements include: software support, use of temperature profiles, documentation and traceability.

As a manufacturer of both rework systems and high-end reflow systems worldwide, ERSA has a large amount of experience in the area of convection soldering with hot air or hot gas. The decision taken 10 years ago to use medium wavelength infrared radiation instead of hot air for rework, however, was well thought out and has paid off.

Rework is a selective soldering process which has the more difficult task of uniformly heating only one component. For this reason, the limitations of hot air in a rework environment caused ERSA engineers to look for a more viable alternative. The solution was found in infrared radiation technology and today, ERSA IR rework systems are leaders on the global market with many thousands of systems sold.

ERSA soldering irons and hand tools have also been very popular since their inception in 1921. Looking at the hand tool range of ERSA products with respect to rework, however, there has always been a large gap between the soldering irons and desoldering tweezers in the lower-end product range and the larger, more expensive semi-automatic IR rework systems in the upper segment. ERSA has consequently researched a solution to not only fill this gap but also to address certain repair needs in today's lead-free rework environment. The answer was found in combining two familiar technologies.

Hybrid - the best of both worlds

As already stated, both technologies, hot air and medium wavelength infrared, have their strengths and weaknesses, depending on the application. With hot air, one can achieve high temperature gradients of up to 10°C/s and more, for example if the component to be desoldered is already defective and if no smaller, neighbouring components can be over-heated in the process of removal.

Such gradients are not permitted, however, for safe re-soldering as specified by IPC which specifies a maximum gradient of 4°c/sec. ERSA's medium wavelength infrared radiation allows for a maximum temperature gradient of approximately 2°C/s (see Figure 1). While this technology is safe, it can be rather slow. A combination of hot air and medium wavelength infrared radiation offers a perfect alternative rework solution.

Figure 1. Graphical depiction of the temperature gradients for various heating technologies
Figure 1. Graphical depiction of the temperature gradients for various heating technologies

Profiting from its experience with both infrared rework systems and convection reflow soldering machines, ERSA has combined both heating technologies into one system. The Hybrid Rework System HR 100 combines infrared and convection heating in a handheld device for safely soldering and desoldering densely packed SMDs (see Figures 2 and 3).

Figure 2. Schematic diagram of the hybrid heating technology
Figure 2. Schematic diagram of the hybrid heating technology

Figure 3. Hybrid tool
Figure 3. Hybrid tool

Part 2 will follow in a future issue.



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

The impact of ML in robotics
Yaskawa Southern Africa Manufacturing / Production Technology, Hardware & Services
The integration of machine learning into robotics has the potential to revolutionise many industries, and particularly the manufacturing sector.

Read more...
ITW EAE wins product introduction award
Allan McKinnon & Associates Manufacturing / Production Technology, Hardware & Services
ITW EAE has earned a 2024 New Product Introduction (NPI) Award for Electrovert’s Deep Wave option for wave soldering machines.

Read more...
Revolutionising clean air in electronics manufacturing
Allan McKinnon & Associates Manufacturing / Production Technology, Hardware & Services
Designed to prioritise clean air in the electronics manufacturing industry, the ZeroSmog Shield Pro sets a new standard for workplace health and safety.

Read more...
High-speed multi-function dispensing
Techmet Manufacturing / Production Technology, Hardware & Services
The D-VIS and DL-VIS from GKG SMT printer specialists are high-speed dispensing systems that can handle multiple scenarios.

Read more...
Optical inspection for SMT
Techmet Manufacturing / Production Technology, Hardware & Services
The Xpection 1860 from Scienscope is a versatile X-ray inspection machine that offers comprehensive circuit board defect detection and quality assurance for the SMT industry.

Read more...
Yamaha introduces upgrades to its 3D AOI systems
Truth Electronic Manufacturing Manufacturing / Production Technology, Hardware & Services
Yamaha Robotics SMT section has revealed performance-boosting upgrades for the YRi-V 3D AOI system, including faster board handling, multi-component alignment checking, and enhanced LED coplanarity measurement.

Read more...
Flexible printed electronics substrates
Manufacturing / Production Technology, Hardware & Services
New LEXAN CXT film from SABIC offers high thermal process stability and transparency for demanding printed electronics substrates.

Read more...
Lead-free solder paste
Techmet Manufacturing / Production Technology, Hardware & Services
Indium8.9HF is an air reflow, no-clean solder paste specifically formulated to accommodate the higher processing temperatures required by SnAgCu, SnAg, and other alloys.

Read more...
Analog Devices and Mouser collaborate on eBook
Manufacturing / Production Technology, Hardware & Services
Mouser has released a new eBook in collaboration with Analog Devices, that offers a detailed analysis of the technologies being used to support sustainable manufacturing practices.

Read more...
Indium celebrates 90 years of innovation
Techmet News
The company’s innovative products, especially its advanced soldering solutions, are found in many common consumer electronics and high-reliability technologies.

Read more...