Manufacturing / Production Technology, Hardware & Services


Increased use of QFNs brings new challenges to light

23 July 2008 Manufacturing / Production Technology, Hardware & Services

The never ending quest to jam ever more functionality into smaller and smaller packages has increased the popularity of yet another high performance device that is quickly gaining favour among handheld product designers and manufacturers. It is the QFN: an abbreviation that stands for quad flat no-lead.

First patented in 1999, use of the QFN has steadily increased in recent years, especially with the proliferation of smaller multifunction handheld devices. QFNs (pictured) are just as the name describes: a flat plastic package with perimeter leads underneath the device and a large pad in the centre. Basically, it is a QFP (quad flat pack) with no leads, and the connections are made by soldering the perimeter lands underneath directly to the pads on the printed circuit board (PCB). In addition to their small form factor advantages, QFNs offer excellent electrical and thermal performance.

While these devices provide clear benefits there are, of course, some challenges as well.

At the package level, there are manufacturing hurdles to overcome, such as issues with wire bonding on polyimide and the die to pad ratio effect on JEDEC performance and, once the devices are made, the next challenge is assembling them onto the PCB and ensuring the long term reliability of the assembly.

For the purposes of this discussion, we will focus on the assembly issues and how to best resolve them. Though the geometry of the QFN is, in part, what makes it appealing, it is also the cause of one of its greatest assembly problems: voiding. When you couple a QFN with a lead-free process, the issue of voiding becomes even more problematic. Here is why.

There are arguably many variables that contribute to the increased voiding characteristics of SAC alloy solder joints. Strictly speaking from a materials perspective, though, the problem has to do with the proclivity of SAC materials for volatile formation. SAC alloys form more gases and these volatiles cannot escape as easily from a molten SAC alloy as they can from a conventional SnPb alloy. They have to travel a greater distance to escape and, therefore, become trapped inside the solder joint and form voids.

When this condition is combined with the unique geometry of the QFN, voiding may become even more prevalent. Unlike BGAs where there are bumps or a QFP where there are leads, the QFN provides no standoff so there is nothing to absorb stress or allow for volatile escape. What is more, the pad in the centre of the QFN, which is primarily used for thermal transfer, presents large area soldering challenges and, consequently, issues with voiding. Because there is such a large surface area and no standoff to allow volatiles to escape, these gases may become entrapped and cause void formation.

Though many would argue that some level of voiding is acceptable, Henkel's stance has always been that reducing voids as much as possible is the best approach. Plus, with QFNs, the voids are not just problematic from a mechanical perspective, but can also result in thermal transfer impedance issues as well. This can lead to resistive heating and, if the voids are sizeable, hot spots can develop and may lead to thermal damage of the device.

Resolving the QFN voiding challenge may not be as difficult as it seems, however. Through a two-pronged materials-based and process-based approach, the materials experts at Henkel have successfully reduced the incidence of voiding in QFNs in both laboratory and high-volume production environments. Henkel's work has revealed that modifications to the solder paste flux system can significantly reduce void formation.

The flux's solvent concentration and boiling temperature, flux content and flux activator concentration all play a role in volatile formation. By altering the flux system to reduce volatile generation, voiding is lessened significantly. Using this technique, Henkel has developed some innovative, low-voiding solder pastes aimed at enabling the QFN to be the powerhouse package it was intended to be.

A low-voiding solder paste in combination with optimised reflow profiles is clearly the best method for ensuring void reduction. I would be remiss if I did not also mention the potential impact of varying the print patterns for the QFN's centre pad as another possible void reduction mechanism.

Depending on the size of the device, limited success has been realised through printing a pattern - such as a snowflake or cross - instead of covering the entire pad with paste, which may allow for some area through which gases can escape.

While we have successfully shown that using a low voiding solder paste and an optimised reflow profile are the best proven routes to QFN void reduction, more detailed analysis of QFN voiding behaviour is certainly warranted to fully understand this issue. In fact, Henkel and Technology de Monterrey recently launched a year-long study on QFN assembly and we expect to publish the final results by year's end.



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Why South African manufacturers must rethink device programming
Manufacturing / Production Technology, Hardware & Services
[Sponsored] As South Africa positions itself as a fast-growing player in global electronics manufacturing, an often overlooked yet critical phase in the production lifecycle is coming into focus: device programming.

Read more...
PCBWay: Your go-to for fast, reliable electronics design solutions
PCBWay Manufacturing / Production Technology, Hardware & Services
[Sponsored] While many engineers may know PCBWay for its excellence in PCB manufacturing, its design service is equally impressive.

Read more...
Why South African manufacturers must rethink device programming
Manufacturing / Production Technology, Hardware & Services
[Sponsored] As South Africa positions itself as a fast-growing player in global electronics manufacturing, an often overlooked yet critical phase in the production lifecycle is coming into focus: device programming.

Read more...
Find high-quality flex and rigid-flex PCBs at PCBWay
PCBWay Manufacturing / Production Technology, Hardware & Services
[Sponsored] Flex and rigid-flex PCBs are widely used across various industries due to their unique combination of flexibility, durability, and design versatility. Among the leading providers, PCBWay stands out for its exceptional quality services.

Read more...
The ultimate range for design and repair
RS South Africa Manufacturing / Production Technology, Hardware & Services
Whether adapting existing systems or maintaining essential equipment, design and repair play a crucial role in ensuring efficiency and longevity.

Read more...
Potential risks of plasma treatment on PCBs
MyKay Tronics Editor's Choice
Plasma treatment involves exposing PCBs to an ionised gas, known as plasma, but despite many advantages, several risks must be managed to ensure safe and effective plasma application in EMS.

Read more...
Next-generation SPI and AOI series
Techmet Manufacturing / Production Technology, Hardware & Services
Saki Corporation has launched its next-gen series for SPI and AOI featuring a modular design for enhanced inspection efficiency and automation.

Read more...
Yamaha’s Advanced Safety Package eases factory-safety
Truth Electronic Manufacturing Manufacturing / Production Technology, Hardware & Services
Yamaha Robotics SMT Section has extended availability of the Advanced Safety Package, which contains optional features to elevate printer and mounter safety above and beyond mandatory levels.

Read more...
Case Study: Siemens Valor automation solution
ASIC Design Services Editor's Choice Manufacturing / Production Technology, Hardware & Services
Electronics manufacturer BMK used Siemens Valor to enhance accuracy and speed up bill-of-materials quotations.

Read more...
The factory beat
Electronic Industry Supplies Manufacturing / Production Technology, Hardware & Services
Change is the only constant across today’s complex manufacturing landscape. The surge of digital transformation, spearheaded by Industry 4.0, has redefined how factories operate, build, and evolve.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved