Design Automation


Energy harvesting reference design

3 August 2011 Design Automation

Silicon Laboratories has introduced an energy-efficient wireless sensor node solution powered by a solar energy harvesting source. The new turnkey energy harvesting reference design enables developers to implement self-sustaining, low-power wireless sensor networks for home and building automation, security systems, industrial control applications, medical monitoring devices, asset tracking systems, and infrastructure and agricultural monitoring systems.

The wireless energy harvesting system is based on the Si10xx wireless microcontroller (MCU) family, a power-efficient, single-chip MCU and wireless transceiver solution which can perform control and wireless interface functions at very low power levels.

In addition to being environmentally friendly and virtually inexhaustible, harvested energy provides a cost-effective, convenient alternative to batteries in many applications such as wireless networking systems. Batteries can be costly and inconvenient to replace, especially in large-scale wireless sensor node applications, and they are unreliable in extreme temperature conditions. Wireless sensor nodes often use batteries because they are placed in locations where it is not possible or convenient to run mains power. Energy harvesting simplifies these applications by eliminating the inconvenience of replacing batteries in inaccessible locations, while also reducing the quantity of depleted batteries for recycling or dumped in landfills.

Silicon Labs’ comprehensive energy harvesting reference design includes wireless network and USB software and a complete circuit design with RF layout, bill of materials (BOM), schematics and Gerber files. The design consists of three components:

* A solar-powered wireless sensor node that measures temperature, light level and charge level, using an Si10xx wireless MCU to control the sensor system and transmit data wirelessly, and a thin-film battery to store harvested energy.

* A wireless USB adapter that connects the wireless sensor node to a PC for displaying sensor data. The adapter features Silicon Labs’ Si4431 EZRadioPRO transceiver with an MCU running USB-HID class software and EZMac wireless software stack.

* A wireless sensor network GUI that displays data from up to four sensor nodes.

The thin film battery used in the energy harvesting reference design has a capacity of 0,7 mAh. In direct sunlight, the battery can be recharged fully in only two hours. While in sleep mode, the wireless sensor node will retain a charge for 7000 hours. If the wireless system is transmitting continuously, it will operate non-stop for about three hours, although it is designed to constantly recharge itself at an appropriate level to keep the thin-film battery from completely discharging.

The reference design accommodates a wide range of harvested energy sources. An onboard bypass connector gives developers the flexibility to bypass the solar cell and tap other energy harvesting sources such as vibration (piezoelectric), thermal and RF.

For more information contact Gary de Klerk, NuVision Electronics, +27 (0)11 894 8214, [email protected], www.nuvisionelec.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Why LabVIEW is critical to South Africa’s automation future
Design Automation
[Sponsored] In a world increasingly defined by connected systems, edge intelligence, and accelerating automation, the ability to build scalable, responsive, and maintainable engineering applications has never been more essential, and at the heart of this evolution lies LabVIEW.

Read more...
Take analogue designs from idea to reality
Design Automation
Bringing your analogue design ideas to life is simple with Microchip’s Analog Development Tool Ecosystem, part of its extensive range of solutions for both analogue and digital engineers.

Read more...
Accurate power estimation
Design Automation
AMD Power Design Manager 2025.1 is now available – with support for AMD Versal AI Edge and Prime Series Gen 2 SoCs and production support for AMD Spartan UltraScale+ devices.

Read more...
AMD Vivado Design Suite 2025.1
Design Automation
AMD Vivado Design Suite 2025.1 is here, and now with support for AMD Spartan UltraScale+ and next-generation Versal devices.

Read more...
Enhance SiC device efficiency using merged-pin Schottky diodes
NuVision Electronics Editor's Choice Power Electronics / Power Management
Silicon carbide (SiC) has advantages over silicon (Si) that make it particularly suitable for Schottky diodes in applications such as fast battery chargers, photovoltaic (PV) battery converters, and traction inverters.

Read more...
Redefining entry-level MCUs
NuVision Electronics DSP, Micros & Memory
The company positions the GD32C231 series as a ‘high-performance entry-level’ solution designed to offer more competitive options for multiple applications.

Read more...
Siemens streamlines design of integrated 3D ICs
Design Automation
Siemens Digital Industries Software recently introduced two new solutions to its EDA portfolio.

Read more...
Webinar: Designing in a connected environment
Design Automation
With Altium Designer and its data management platform, the team will always be up to date with the latest design documents and be able to comment on schematic, PCB, BOM and assembly drawings.

Read more...
MCU for low-power, IoT applications
NuVision Electronics DSP, Micros & Memory
Silicon Labs recently announced the PG26, a general-purpose microcontroller with a dedicated matrix vector processor to enhance AI/ML hardware accelerator speeds.

Read more...
ST’s graphical no-code design software
Design Automation
MEMS-Studio is a complete desktop software solution designed to develop embedded AI features, evaluate embedded libraries, analyse data, and design no-code algorithms for the entire portfolio of ST’s MEMS sensors.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved