Design Automation


JESD204B FPGA debug software

19 February 2014 Design Automation

Analog Devices has revealed an FPGA-based reference design with software and HDL code that reduces the design risk of high-speed systems incorporating JESD204B-compatible converters.

Called the JESD204B Xilinx Transceiver Debug Tool, it supports the 312,5 Mbps to 12,5 Gbps JESD204B data converter-to-FPGA serial data interface and Xilinx 7 series FPGAs and Zynq-7000 All Programmable SoCs. It is available at no cost with ADI converters and provides an on-chip, 2D statistical eyescan that helps designers of radar arrays, software-defined radio and other high-speed systems more quickly verify the signal integrity of JESD204B data converter-to-FPGA designs using gigabit transceivers.

The tool provides on-chip eyescanning that augments the test and measurement process by statistically determining signal integrity inside the FPGA. Where other techniques probe the outside of the FPGA package and acquire the signal before it’s been processed by Xilinx’s automatic gain control and equaliser blocks, this approach yields a more accurate result by utilising the Xilinx transceiver on-chip eyescan feature to allow developers to monitor the signal integrity and design margin on their JESD204B links inside the FPGA.

Analog Devices’ reference design gathers data directly from the on-chip Rx margin analysis feature in the 7 series IBERT core and manages the data locally inside the FPGA or one of the ARM dual-core Cortex-A9 MPCore processors, displaying the data on an HDMI monitor or over Ethernet to a remote monitoring station.

For more information contact Erich Nast, Avnet Kopp, +27 (0)11 319 8600, [email protected], www.avnet.co.za





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

New Studio 6 SDK
Design Automation
New Simplicity Studio 6 SDK opens development environment, and opens developers to Series 3.

Read more...
New camera module targets AI and computer vision
Vepac Electronics Design Automation
Innodisk has announced its shift towards the AI industry with half of its AI development related to image recognition.

Read more...
Engineering the future of automation
Design Automation
As the next great leap forward in mechanisation, industrial automation integrates data into the manufacturing equation through high-input sensors and sensor infrastructures.

Read more...
Fusion 360 gains Ultra Librarian electronics CAD library
Design Automation
Autodesk collaborated with Ultra Librarian to generate this Fusion 360-compatible app that provides users with free verified schematic symbols, PCB footprints, 3D STEP models, and reference designs.

Read more...
ST releases new reference designs for STM32
Altron Arrow Design Automation
ST Microelectronics has released reference designs for the STM32WL5x and STM32WLEx, allowing new applications to be quickly prototyped.

Read more...
TI releases top five power design tools
Altron Arrow Design Automation
Texas Instruments has released an online resource combining the top five power design tools available to aid in the next electronic project design.

Read more...
Find tools and help more easily on Mouser’s website
Design Automation
The Services and Tools page and Help Centre give customers the ability to view and track orders, request technical support and data sheets, and place orders.

Read more...
Upgraded AI/ML SDK for PolarFire FPGAs
Altron Arrow Design Automation
Network sizes have been reduced by 50% by optimising containers for weights and the built-in bit accuracy simulator’s speed has been tripled.

Read more...
Mouser’s resource pages make it easier to find what you need
TRX Electronics Design Automation
Mouser Electronics offers a wealth of customer-focused online tools to simplify and optimise the selection and purchasing process. Helping customers to easily browse, select and purchase products, the ...

Read more...
Software development kit for motor control
Altron Arrow Design Automation
STMicroelectronics’ STM32 microcontrollers offer the performance of industry-standard Arm Cortex-M cores running either vector control or field-oriented control (FOC) modes, which are widely used in high-performance ...

Read more...