Editor's Choice


Laser soldering for ultrafine parts or high density mounting

11 October 2017 Editor's Choice Manufacturing / Production Technology, Hardware & Services

Laser soldering is currently gaining attention as a new soldering method. However, as this is a new industrial technique compared to iron tip soldering, the heating principles differ, and it cannot simply replace iron soldering.

Without understanding and properly utilising the technical characteristics of both laser and iron soldering, soldering stability and quality are unattainable. This article will explain the principles of laser soldering, as well as guidelines for its use.

The mechanism of laser heating

Laser heating differs from iron heating in that it is fundamentally a surface heating process, rather than a process of heat transfer. There are three basic steps in a soldering heating process: the first to preheat the soldering points, the second to apply heat in order to feed the solder, and the third to post-heat to set the shape. Both iron and laser soldering follow these steps, but the heat conversion process of the two methods is different. Understanding these differences is necessary in order to select the most appropriate method for required soldering outcomes.

The iron soldering heating process, as illustrated in Figure 1, comprises the following steps:

1. Heating the iron tip to the set temperature.

2. Applying the tip to the soldering point to achieve fusion temperature around the area.

3. Feeding solder wire.

On the other hand, laser soldering (Figure 2) works as follows:

1. Applying laser shot to soldering point.

2. A land point developing heat.

3. The pad surface heats up to fusion temperature.

4. Feeding the solder.

In the iron soldering method, its heat is transferred through iron tips (heat transfer), while laser soldering produces heat on the applied points (surface heating).

Based on these methods, iron soldering does not heat over the set temperature in most cases, however if the iron continues to be applied, the surrounding area will heat up. In contrast, laser soldering heats the applicable area locally and the absorbed energy instantaneously raises its heat level. Thus, carelessness during laser soldering will quickly lead to overheating. As a result, to carry out laser soldering correctly, expertise and experience in both soldering and laser technology are required.

Consequences of temperature being too high or too low

As the composition of solder changes based on heating conditions, neither sufficient strength nor reliability can be realised without soldering at the proper temperature. For example, the internal composition of solder is mostly unchanged when soldered at the proper temperature, but when it is overheated, strength and reliability are diminished as a result of composition changes.

In addition, the liquidity of flux changes based on temperature. For instance, when properly heated, the flux first flows into the soldered points and through-holes, removing dirt and oxides in the area and improving the soldering compatibility. In contrast, when overheated, solder moves into through-holes and stops flux flow. Furthermore, overheating easily damages circuit boards, leaving cracks on the inside.

Nowadays there is an interest in moving from iron soldering to laser soldering, simply because of its technological benefits as well as little required maintenance. However, without understanding the laser’s distinct characteristics for soldering applications, its potential advantages can be wasted.

Advantages of laser soldering

Laser soldering can be a very useful technology for operations which are difficult or impossible with iron tip soldering, so long as the heating conditions are carefully set in advance.

The main advantage of laser soldering is its non-contact action – it has no contact with the circuit board or electronic parts, so soldering is accomplished without any physical damage. Efficient and pinpoint heating is another advantage which is applicable for narrow and tight places. Furthermore, it needs less consumable materials such as iron tips, which significantly reduces daily maintenance workload.

On the other hand, highly reflective materials make it difficult for a laser to apply heat to the target, and in such a case the heat transfer mechanism of iron soldering is preferable.

Technology advancement

After successful commercialisation, laser soldering equipment has been adopted by electronics manufacturers of smartphones, medical devices, and many others. Throughout the uptake of the technology, the soldering laboratory at Japan Unix has been collecting data on safety, reliability and fusion strength through actual inspections and evaluations, and the value of adopting laser soldering continues to be demonstrated.

For more information contact Igmar Grewar, Quamba Technologies, +27 (0)83 417 4294, [email protected], www.quamba.co.za





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Active event tracking using a novel new technique
Editor's Choice
SPAES (single photon active event sensor) 3D sensing, developed by VoxelSensors, is a breakthrough technology that solves current critical depth sensing performance limitations for robotics applications.

Read more...
ABB commits to a more inclusive future as it empowers women and youth in engineering
ABB South Africa Editor's Choice
Through structured development, inclusive hiring, and focused empowerment, ABB Electrification is shaping a more equitable and dynamic future for the engineering industry.

Read more...
Unlocking the next frontier – women leading digital transformation in South Africa’s technology sector
Editor's Choice
As South Africa celebrates Women’s Month, it is an ideal time to reflect on the critical role women are playing in shaping the country’s technology sector.

Read more...
Why GNSS positioning precision is enabling the next wave of IoT applications
iCorp Technologies Editor's Choice Telecoms, Datacoms, Wireless, IoT
While high-performance GNSS implementations are achievable with few limitations, most real-world applications must balance power consumption, form factor and accuracy requirements.

Read more...
5G RedCap: Unlocking scalable IoT connectivity
iCorp Technologies Editor's Choice Telecoms, Datacoms, Wireless, IoT
As 2G and 3G networks rapidly sunset across the globe, the Internet of Things (IoT) market faces a critical challenge: how to maintain reliable cellular connectivity without the complexity or cost of full 5G.

Read more...
Is RFoIP technology the future for signal transportation for Satcom applications?
Accutronics Editor's Choice Telecoms, Datacoms, Wireless, IoT
RFoF technology continues to be used for successful IF signal transportation in the ground segment and there is widespread belief that it will be for some time to come, especially for critical communications applications.

Read more...
Celebrating innovation, leadership, and the next generation
Editor's Choice
In electronics and engineering, women are not just participating; they are transforming, innovating, and shaping the future.

Read more...
Women leading the charge in SA’s energy sector
Editor's Choice
While historically male-dominated, the energy industry is slowly but surely opening its doors to more diverse voices and talents.

Read more...
High performance SDR design considerations
RFiber Solutions Editor's Choice DSP, Micros & Memory
As the spectrum gets increasingly crowded, and adversaries more capable, the task of examining wide bands and making sense of it all, while not missing anything, gets harder.

Read more...
Microtronix revives defunct cell phone plant
Microtronix Manufacturing Editor's Choice Manufacturing / Production Technology, Hardware & Services
In a significant move for South Africa’s struggling electronics manufacturing sector, local technology firm Microtronix has breathed new life into a formerly defunct cell phone manufacturing facility.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved