Analogue, Mixed Signal, LSI


Impedance and potentiostat front end

26 June 2019 Analogue, Mixed Signal, LSI

A new electrochemical and impedance measurement front end has been developed by Analog Devices to enable the next generation of vital sign monitoring devices and intelligent electrochemical sensors.

The AD5940 incorporates both potentiostat and electrochemical impedance spectroscopy (EIS) functionality on a single chip, allowing for sensor measurement in both time and frequency domains.

The device features integrated hardware accelerators for advanced sensor diagnostics, ultra low noise for accurate sensor measurements, and is designed for wearable ‘always-on’ applications. Supporting the measurement of 2-lead, 3-lead and 4-lead electrochemical sensors, it is suitable for applications where high-precision biological and chemical sensing is mission-critical, such as industrial gas sensing, liquid analysis, material sensing, vital signs monitoring, impedance spectroscopy and disease management.

The on-chip potentiostat allows for a host of standard electrochemical-based measurement techniques, such as amperometric, voltametric or impedance measurements.

The AD5940 is designed to be used in healthcare-related bio-impedance systems for both skin impedance and body impedance measurements, and also to work with the AD8233 AFE in a complete bioelectric/biopotential measurement system.

The analog front end chip can measure voltage, current and impedance. The device consists of two potentiostat loops: a low bandwidth loop with the ability to generate AC signals up to 200 Hz, and a high bandwidth loop with the ability to generate AC signals up to 200 kHz. The ultra-low power potentiostat consumes 6,5 μA in biased mode.

The AD5940 measurement channel features a 16-bit, 800 kSps, multichannel successive approximation register (SAR) analog-to-digital converter (ADC) with input buffers, a built in anti-alias filter (AAF), and a programmable gain amplifier (PGA).

The ADC features an input voltage range of ±1,35 V; an input mux before the ADC allows the user to select an input channel for measurement. These input channels include multiple external current and voltage inputs, and internal voltage channels. The internal channels enable on-chip diagnostic measurements of the internal supply voltages, die temperature and reference voltages.

The AD5940 measurement blocks can be controlled via direct register writes through the serial peripheral interface (SPI), or alternatively, by using a pre-programmable sequencer, which provides autonomous control of the AFE chip. 6 KB of static random access memory (SRAM) is partitioned for a deep data first in, first out (FIFO) and command memory. Measurement commands are stored in the command memory and measurement results are stored in the data FIFO. A number of FIFO related interrupts are available to indicate the state of the FIFO.

For more information contact Conrad Coetzee, Altron Arrow, +27 11 923 9600, [email protected], www.arrow.altech.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Wi-Fi 6 and Bluetooth LE co-processor
Altron Arrow Telecoms, Datacoms, Wireless, IoT
STMicroelectronics has released its ST67W611M1, a low-power Wi-Fi 6 and Bluetooth LE combo co-processor module.

Read more...
High-temperature closed-loop MEMS accelerometer
RS South Africa Analogue, Mixed Signal, LSI
This sensor from TDK is a high-temperature MEMS accelerometer with ±14 g input range and a digital interface for measurement while drilling applications.

Read more...
Empowering innovation with ST’s AI processors
Altron Arrow AI & ML
Artificial intelligence is no longer just a futuristic concept – it is here, and it is transforming industries at an unprecedented pace.

Read more...
1-Wire EEPROM with secure authenticator
Altron Arrow DSP, Micros & Memory
The DS28E54 secure authenticator combines FIPS 202-compliant secure hash algorithm (SHA-3) challenge and response authentication with secured electrically erasable programmable read-only memory.

Read more...
The 6 GHz band radio solution
Altron Arrow Telecoms, Datacoms, Wireless, IoT
Analog Devices’ 16 nm transceiver family offers a highly integrated solution for this new frequency band, featuring low power consumption and high performance.

Read more...
New clock generator family
Altron Arrow Telecoms, Datacoms, Wireless, IoT
Based on Skyworks’ fifth generation DSPLL and MultiSynth technologies, these devices enable any-frequency, any-output clock generation.

Read more...
Dual accelerometers on the same die
Altron Arrow Analogue, Mixed Signal, LSI
The LSM6DSV320X is the first mainstream inertial sensor to house a gyroscope alongside two accelerometers, one capable of sensing up to ±16 g and one sensing up to a staggering ±320 g.

Read more...
Dual-range IMU with edge processing
EBV Electrolink Analogue, Mixed Signal, LSI
ST’s innovative LSM6DSV80X combines two accelerometer structures for 16 g and 80 g full-scale sensing, a gyroscope up 4000 dps, and embedded intelligence in a single component.

Read more...
Ultra-low-power wireless module
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The STM32WBA5MMG from STMicroelectronics is an ultra-low-power, small form factor, certified 2,4 GHz wireless module that supports Bluetooth LE, Zigbee 3.0, OpenThread, and IEEE 802.15.4 proprietary protocols.

Read more...
16-channel multicell battery monitor
Altron Arrow Power Electronics / Power Management
The ADBMS6830B is a multicell battery stack monitor that measures up to 16 series-connected battery cells with a lifetime total measurement error of less than 2 mV.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved