Editor's Choice


Opto-electronic health monitoring

26 October 2022 Editor's Choice

The increasing demand for biosensors is a direct response to the growth of the healthcare market, technological innovation, an aging population, and the increased existence of serious diseases. Biosensors are effective at detecting biological materials, such as enzymes, whole cells, and tissues.

Because of this, wearable biosensors are being adopted rapidly within the healthcare industry. Wearable biosensors are devices that are designed to report physiological data in real time, using biochemical markers for measurements.


Figure 1. OSRAM SFH 7072 biomonitoring sensor.

Optical sensors from ams OSRAM

The SFH series sensors from ams OSRAM are compact opto-electronic devices that use LEDs and photodiodes to monitor heart rate and oxygen saturation. The LED transmits light through the epidermis into the dermis layer which contains veins and arteries amongst other extracellular components. When the body’s heart beats, blood is pumped through the arteries and veins which creates pressure that causes a change in volume, changing the way the veins and arteries reflect this incoming light. The photodiode measures the transmitted and reflected light, providing information about the heartrate.

Oxygen saturation is determined by measuring the haemoglobin absorption in the blood. Oxygenated haemoglobin (HbO2) absorbs light differently than non-oxygenated haemoglobin (Hb). Non-oxygenated haemoglobin absorbs greater amounts of red light, with wavelengths around 660 nm. Oxygenated haemoglobin absorbs larger quantities of infrared light, having wavelengths around 960 nm. To measure oxygen saturation, red and infrared LEDs illuminate the skin, and a photodetector measures the difference in absorption.

The oxygen saturation (SpO2) can then be calculated through the use of different absorption levels (Hb vs. HbO2) using the following formula:

The absorption of light in human blood is primarily dependant on the oxygen content of the haemoglobin. There is more absorption occurring at shorter wavelengths (from blue to yellow), which indicates that green light works the best for heart measurement applications. Red and infrared light can be used for areas that have a higher arterial blood concentration, such as the fingertips, ears, and forehead.

The entire health monitoring system consists of various functional building blocks. The optical front end (OFE) can be realised through discrete components (LEDs and photodiodes) or with an integrated module. The analog front end (AFE) provides the analog signal processing and programmable LED driving.

Any health monitoring system also requires a suitable microcontroller and a heart rate and motion compensation algorithm. In dynamic situations, motion sensors measure artefacts that arise from the user motion. For increased accuracy, a motion compensation feature is therefore necessary and requires the addition of a suitable motion sensor.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

The ‘magic’ of photovoltaic cells
Editor's Choice
Everyone knows that solar generation converts sunlight to electricity, but what comprises a solar panel, and how do they actually work?

Read more...
Analysis of switch-mode power supply: inductor violations
Altron Arrow Editor's Choice Power Electronics / Power Management
Common switch-mode power supply (SMPS) design errors are discussed, and their appropriate rectification is specified, with details on complications that arise with the power stage design of DC-DC switching regulators.

Read more...
Bridging the gap between MCUs and MPUs
Future Electronics Editor's Choice AI & ML
The Renesas RA8 series microcontrollers feature Arm Helium technology, which boosts the performance of DSP functions and of AI and machine learning algorithms.

Read more...
Accelerating the commercialisation of the 5G IoT markets
Altron Arrow Editor's Choice Telecoms, Datacoms, Wireless, IoT
Fibocom unveils Non-Terrestrial Networks (NTN) module MA510-GL, enabling satellite and cellular connectivity to IoT applications.

Read more...
Hardware architectural options for artificial intelligence systems
NuVision Electronics Editor's Choice AI & ML
With smart sensors creating data at an ever-increasing rate, it is becoming exponentially more difficult to consume and make sense of the data to extract relevant insight. This is providing the impetus behind the rapidly developing field of artificial intelligence.

Read more...
Demystifying quantum
Editor's Choice
Quantum, often called quantum mechanics, deals with the granular and fuzzy nature of the universe, and the physical behaviour of its smallest particles.

Read more...
Service excellence with attention to detail
Deman Manufacturing Editor's Choice
The vision of industry pioneers Hugo de Bruyn and Charles Hauman led to the birth of Deman Manufacturing, a company that sets new standards for innovation and performance within the industry.

Read more...
What is an RF connector?
Spectrum Concepts Editor's Choice Interconnection
If you look across the broader electromagnetic spectrum, the selection of the 3 kHz to 300 GHz frequency range for RF signals is a result of a balance between propagation characteristics, data transmission requirements, regulatory allocations, and the compatibility of electronic components and devices.

Read more...
Make your small asset tracker last longer
Altron Arrow Editor's Choice Power Electronics / Power Management
This design solution reviews a typical asset tracking solution, and shows how the MAX3864x nanopower buck converter family, with its high efficiency and small size, enables longer battery life in small portables.

Read more...
The power of Matter
Editor's Choice Telecoms, Datacoms, Wireless, IoT
Matter offers a reliable, secure, seamless way to interconnect devices from different manufacturers, allowing a new level of interoperability to be enjoyed.

Read more...