Editor's Choice


IEEE 802.11be: What’s the fuss?

30 August 2023 Editor's Choice Telecoms, Datacoms, Wireless, IoT

The next amendment to the IEEE 802.11 Wi-Fi standard is known as IEEE 802.11be EHT (Extremely High Throughput), building onto the previous generation 802.11ax. Included are functions like orthogonal frequency-division multiplexing (OFDM) where a single stream of information is split across several closely spaced subchannel frequencies, and the inclusion of the 6 GHz transmission frequency from Wi-Fi 6E, ensure blisteringly fast data throughput with little delay.

Wi-Fi 7 was first approved in March 2019, with the initial specifications being a protocol using three frequencies and communicating at up to 46120 Mb/s. Although not yet ratified – this is expected to be completed only in May 2024 – many manufacturers are releasing products based on the new standard, and some are bypassing the Wi-Fi 6E standard altogether to jump directly to Wi-Fi 7 (which promises everything Wi-Fi 6E has and more). Although these devices are based on a preliminary version, manufacturers will effect any changes later on via a firmware update.

The standard is backwards compatible with current Wi-Fi 5 and Wi-Fi 6 standards, so all existing devices currently deployed on a wireless network will continue to function. However, with more powerful hardware and better antenna arrangements, it will provide faster speeds and a better quality connection, with lower latency. Stability is reported to also have been improved over the predecessors.

And these improvements are vital for the modern data-hungry applications that users are expecting in the future. Examples include simultaneously streaming from multiple sources in high definition, applications using augmented and virtual reality (AR and VR), networks that are sure to be connected to hundreds of IoT devices all collecting and transmitting data, and of course, high-speed low-latency cloud gaming.

To achieve this, Wi-Fi 7 offers various features like faster and a larger number of MIMO streams, wider radio channels, and other features to prevent channels from causing interference during these multiple streams.

As shown in figure 1, Wi-Fi 7 doubles the available bandwidth, compared to Wi-Fi 6E. This is accomplished with three super-wide 320 MHz channels (compared to Wi-Fi 6’s 160 MHz channels) on the dedicated 6 GHz band while still using the existing channels on the legacy 5 and 2,4 GHz bands.

Quadrature Amplitude Modulation (QAM) is the scheme used to translate digital packets into an analogue signal that can wirelessly transfer the data. By varying the phase and amplitude of radio waves, spectral efficiency is improved by incorporating more data into each transmission.

When it comes to arranging the data into packets, Wi-Fi 7 has certainly surged ahead. Whereas Wi-Fi 5 and Wi-Fi 6 used 256-QAM and 1K-QAM respectively, Wi-Fi 7 makes the jump to a 4K-QAM (1024-QAM) scheme, an increase to the physical layer data rate of 20% over Wi-Fi 6.

With Wi-Fi 5 and Wi-Fi 6 there are a maximum of eight MIMO data streams per frequency. Wi-Fi 7 doubles this to 16 MIMO streams resulting in a theoretical transmission rate of 46 Gb/s (if all 16 streams are used over a 320 MHz channel). Therefore, combined with 320 MHz ultra-wide bandwidth, multi-link operation and 4K-QAM, Wi-Fi 7 provides speeds up to 4,8 times faster than Wi-Fi 6 and 13 times faster than Wi-Fi 5.


Figure 3. TP-Link Deco BE95 Wi-Fi 7 mesh router.

So far, however, the top routers available that support this new standard only support a maximum of four MIMO streams. Secondly, a connected device can only transmit over one frequency at a time, so the real-world transmission throughput will be around twice as fast as Wi-Fi 6. This is still a major boost, as combined with the increase in throughput, there will be less congestion, resulting in a more consistent link.

One manufacturer that has already announced products using this new Wi-Fi standard is TP-Link with its Deco BExx range of mesh routers. The Deco BE95 is a quad-band whole home mesh Wi-Fi 7 system that can handle 16 streams for a total throughput of up to 33 Gb/s (each of the two 6 GHz links can accommodate 11 520 Mb/s and this is combined with the 5 GHz (8640 Mb/s) and 2,4 GHz links. This multi-link operation, together with the 320 MHz-wide channels, not only increases throughput but also reduces latency and improves reliability of the communication link.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

High performance SDR design considerations
RFiber Solutions Editor's Choice DSP, Micros & Memory
As the spectrum gets increasingly crowded, and adversaries more capable, the task of examining wide bands and making sense of it all, while not missing anything, gets harder.

Read more...
Microtronix revives defunct cell phone plant
Microtronix Manufacturing Editor's Choice Manufacturing / Production Technology, Hardware & Services
In a significant move for South Africa’s struggling electronics manufacturing sector, local technology firm Microtronix has breathed new life into a formerly defunct cell phone manufacturing facility.

Read more...
How smart components drive sustainable industrial efficiency
TRX Electronics Editor's Choice Manufacturing / Production Technology, Hardware & Services
Manufacturing industries across South Africa face mounting pressure to reduce operational costs whilst meeting increasingly stringent environmental regulations, and the path to achieving these goals lies in embracing advanced electronic components that enable smarter, more efficient industrial operations.

Read more...
From the editor's desk: Fostering a love for engineering through DIY projects
Technews Publishing Editor's Choice
Many students are turning away from these perceived ‘hard’ STEM subjects, moving instead toward soft sciences and fields that seem less intimidating or more immediately rewarding.

Read more...
Satellite IoT through non-terrestrial networks
Future Electronics Editor's Choice Telecoms, Datacoms, Wireless, IoT
Non-terrestrial networks fill cellular coverage gaps in remote areas by extending terrestrial networks and are not subject to disruptions from natural disasters or sabotage.

Read more...
Enhance SiC device efficiency using merged-pin Schottky diodes
NuVision Electronics Editor's Choice Power Electronics / Power Management
Silicon carbide (SiC) has advantages over silicon (Si) that make it particularly suitable for Schottky diodes in applications such as fast battery chargers, photovoltaic (PV) battery converters, and traction inverters.

Read more...
What is Wi-Fi HaLow and why choose it for IoT?
iCorp Technologies Editor's Choice Telecoms, Datacoms, Wireless, IoT
Wi-Fi HaLow introduces a low power connectivity option that, in contrast to other Wi-Fi options, offers greater range of approximately 1 km, which opens up a raft of IoT use cases.

Read more...
Simple battery charger ICs for any chemistry
Altron Arrow Editor's Choice Power Electronics / Power Management
The LTC4162 is a highly integrated, high voltage multi-chemistry synchronous monolithic step-down battery charger and PowerPath manager with onboard telemetry functions and optional maximum power point tracking.

Read more...
From the editor's desk: Is the current AI really what we want?
Technews Publishing Editor's Choice
The companies that develop LLMs need to change direction and concentrate on freeing up our time, not so that we can have more time to do the tasks we don’t want to do in the first place, but rather to allow us more time to do what we love.

Read more...
When it comes to long-term reliability of RF amplifier ICs, focus first on die junction temperature
Altron Arrow Editor's Choice Telecoms, Datacoms, Wireless, IoT
When considering the long-term reliability of integrated circuits, a common misconception is that high package or die thermal resistance is problematic. However, high or low thermal resistance, by itself, tells an incomplete story.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved