Manufacturing / Production Technology, Hardware & Services


Lead-free solder alloys based on Sn-Ag-Cu-Sb with enhanced thermal and electrical reliability

31 July 2024 Manufacturing / Production Technology, Hardware & Services

With automotive electronics booming, especially those in electrical vehicles (EV), more sensors and power moderators are increasingly required for electrical vehicles and self-driving cars. Lead-free tin-silver-copper (SnAgCu), also known as SAC, has been a popular solder alloy choice for surface mount technology (SMT) assembly in the electronics industry. While SAC has served the electronics industry adequately well, its adoption for automotive applications has proved to be challenging for several reasons.

Key amongst them is uncertainty in service temperature range capability. There is no question that automotive applications demand high reliability; however, that high reliability is required not only under moderate temperatures, but also under high service temperature conditions. Only limited success has been achieved up to now.

In this research, a novel SnAgCu-based solder alloyed with Sb was developed and characterised for its reliability performance in chip resistors and CABGA192 under thermal cycling testing (TCT) of -40 to 125°C.

Optimisation of Sb content in Sn/3,2Ag/0,7Cu alloys

In the recent development of high-performance Pb-free solder alloys, Sb plays a key role in improving the thermal fatigue resistance of solder joints in harsh thermal cycling or thermal shock conditions. According to the binary Sn-Sb phase diagrams, the solubility of Sb in Sn is approximately 0,5wt% at room temperature, and about 1,5wt% at 125°C. Due to the dissolution of Sb in Sn-based Pb-free solders, solid solution strengthening is expected in these alloys.

Apart from solid solution strengthening, alloying with Sb also has the potential to form various intermetallic phases (IMCs) with Sn, resulting in the precipitation hardening. In literature, 1,5 to 9,0wt% of Sb has been reported. Those alloys showed different thermal fatigue resistance, depending on the concentration of the alloyed Sb. The fine SnSb IMC particles nucleate and grow (cluster of different atoms in certain stoichiometric ratio) after solder solidification during reflow. These SnSb particles are reversely dissolved back into Sn matrix to form a solid solution with increasing temperature, and then precipitate out with the drop in temperature.

A sufficient quantity of Sb is important to harden the solder alloy by providing both solid-solution and precipitation strengthening to the alloy. When the amount of Sb is reduced below 3,0wt%, fine SnSb particles are completely dissolved back into the Sn matrix to form an SnSb solid solution when serving at 150°C and above; no SnSb fine particles remain to strengthen the alloy.

Strengthening in alloys is associated with interrupting the dislocation movement. Both fine particles embedded in the alloy matrix and solute atoms in the solid solution act as obstacles to block the dislocation slide along the favourable lattice direction. At high temperatures (homologous temperature > 0,6), atomic diffusion plays an important role in assisting the dislocation movement. For small obstacles like solute atoms, atomic diffusion can easily assist the dislocation to bypass or ‘climb over’ the obstacles.

For large obstacles like precipitates, more atomic diffusion steps are needed to allow the dislocations to bypass or ‘climb over’. Thus, precipitates are more valuable to maintain high-temperature strength through interrupting the dislocation movement.

Therefore, 4,5wt% and above of Sb is expected to keep the alloys maintaining enough precipitate strengthening, even at 150°C and above. However, if the Sb addition exceeds 10wt%, the solder alloys will have a liquidus temperature above 266°C, making it impossible to be reflowed by the conventional SAC305 process (the peak reflow temperature is usually below 245°C).

Findings

In this research, the thermal performance of five Sn/3,2Ag/0,7Cu/xSb (x in range of 4,5 to 6,5wt%) alloys were compared to select the optimised Sb content. On conclusion of the research, it was noted that based on shear testing at various temperatures, and at different intervals of TCT -40 to 125°C, 90,6Sn/3,2Ag/0,7Cu/5,5Sb (Indalloy276) showed the best performance in those Sb-containing alloys.

Thus, this composition with the addition of 5,5wt% of Sb was identified and developed for testing in targeting high reliability with a wide service temperature capability. Indalloy276 has a melting temperature range from 223 to 232°C and could be processed with traditional SAC305 reflow profiles. The crack resistance of Indalloy276 in the components of CABGA192 and chip resistors are better than SAC305 under thermal cycling of -40 to 125°C. Alloying with 5,5wt% of Sb dramatically improved the thermal fatigue resistance compared to SAC305.

To read the full research paper visit www.dataweek.co.za/*jul24tech


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

The impact of harsh environments and ionic contamination on post-reflow circuit assemblies
MyKay Tronics Manufacturing / Production Technology, Hardware & Services
There is well documented historical proof that post-reflow circuit assemblies, when subjected to harsh environments, are particularly vulnerable to failure mechanisms, but modern electronic assemblies are far more susceptible to this phenomenon.

Read more...
Engineering copper grain structure for high-yield hybrid bonding in 3D packaging
Testerion Editor's Choice Manufacturing / Production Technology, Hardware & Services
The way copper grains are sized and distributed forms the metallurgical foundation of hybrid bonding, enabling lower bonding temperatures, greater reliability, and stable grain structures throughout integration.

Read more...
Understanding solder dross: causes and control strategies
Truth Electronic Manufacturing Editor's Choice Manufacturing / Production Technology, Hardware & Services
Dross formation is an inevitable consequence of wave soldering. It occurs when molten solder comes into contact with oxygen, forming metal oxides that float on the surface of the solder bath. Over time, this oxidation byproduct accumulates and must be removed to maintain solder quality and process consistency.

Read more...
Non-destructive techniques for identifying defects in BGA joints – TDR, 2DX, and cross-section-SEM comparison
MyKay Tronics Manufacturing / Production Technology, Hardware & Services
This whitepaper reports the results of a comparison of the following techniques: TDR, automatic X-ray inspection (AXI), transmission X-ray (2DX), cross-section/SEM, and Dye & Pry.

Read more...
Implications of using Pb-free solders on X-ray inspection of flip chips and BGAs
MyKay Tronics Manufacturing / Production Technology, Hardware & Services
With the move to Pb-free soldering, most of the attention has been paid to reflow temperatures, component compatibility, and reliability concerns, but the implications for inspection, particularly X-ray inspection, are equally important and often underestimated.

Read more...
The causes of solder balls in robotic soldering
Manufacturing / Production Technology, Hardware & Services
Solder balls (also known as solder splatter) are a major concern in many production sites as they may potentially cause shorts, leading to long-term impacts on product reliability.

Read more...
Material challenges for superconducting quantum chips
Manufacturing / Production Technology, Hardware & Services
To achieve the scalable and repeatable production of superconducting circuits for quantum technology products, players in the industry are leveraging semiconductor fabrication techniques.

Read more...
UV curing oven for high-efficiency PCB production
Techmet Manufacturing / Production Technology, Hardware & Services
The jCURE-2UV+ from JTU is a cutting-edge ultraviolet curing oven engineered for fast, reliable curing of UV-sensitive coatings in SMT production environments.

Read more...
Automatic stencil cleaning
ZETECH ONE Manufacturing / Production Technology, Hardware & Services
The MBtech N29 series delivers high-precision stencil cleaning with a focus on efficiency, economy and the environment, and is ideal for SMT adhesive and solder paste stencil maintenance.

Read more...
Versatile wave soldering
MyKay Tronics Manufacturing / Production Technology, Hardware & Services
The EMST Stallion fc - PLC is a highly capable wave soldering machine engineered for precision and productivity in electronics manufacturing.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved