Editor's Choice


It’s the ampere, but not as we know it

5 October 2016 Editor's Choice News

When all is said and done, our lights will be just as bright and our refrigerators just as cold.

But very soon the ampere – the SI base unit of electrical current – will take on an entirely new identity, and scientists at NIST (the National Institute of Standards and Technology in the USA) are at work on an innovative, quantum-based measurement system that will be consistent with the impending change.

In 2018, the base units of the International System of Units (SI) are scheduled to be redefined in terms of physical constants, with major changes in the kilogram, ampere, kelvin and mole. It won’t be a minute too soon. The ampere (A) has long been a sort of metrological embarrassment. For one thing, its 70-year-old formal definition, phrased as a hypothetical, cannot be physically realised as written:

The ampere is that constant current which, if maintained in two straight parallel conductors of infinite length, of negligible circular cross-section, and placed 1 metre apart in vacuum, would produce between these conductors a force equal to 2 x 10–7 newton per metre of length.

For another, the amp’s status as a base unit is problematic. It is the only electrical unit among the seven SI base units, so you might logically expect that all other electrical units, including the volt and the ohm, will be derived from it. But that’s not the case. In fact, the only practical way to realise the ampere to a suitable accuracy now is by measuring the nominally ‘derived’ volt and ohm using quantum electrical standards and then calculating the ampere from those values.

In 2018, however, the ampere is slated to be redefined in terms of a fundamental invariant of nature: the elementary electrical charge (e). Direct ampere metrology will thus become a matter of counting the transit of individual electrons over time.

One promising way to do so is with a nanoscale technique called single-electron transport (SET) pumping. Specially adapted at NIST for this application, it involves applying a gate voltage that prompts one electron from a source to tunnel across a high-resistance junction barrier and onto an ‘island’ made from a microscopic quantum dot.

The presence of this single extra electron on the dot electrically blocks any other electron from tunnelling across until a gate voltage induces the first electron to move off the island, through another barrier, and into a drain. When the voltage returns to its initial value, another electron is allowed to tunnel onto the island; repeating this cycle generates a steady, measurable current of single electrons.

There can be multiple islands in a very small space. The distance from source to drain is a few micrometres, and the electron channels are a few tens of nanometres wide and 200 nm to 300 nm long. And the energies involved are so tiny that that device has to be cooled to about 10 millikelvin in order to control and detect them reliably.

Researchers surround an open dilution refrigerator that cools the SET unit to near absolute zero. Clockwise from left: Michael Stewart, Bahman Sarabi, Neil Zimmerman.
Researchers surround an open dilution refrigerator that cools the SET unit to near absolute zero. Clockwise from left: Michael Stewart, Bahman Sarabi, Neil Zimmerman.

Conventional, metallic SET devices, says NIST quantum-ampere project member Michael Stewart, can move and count single electrons with an uncertainty of a few parts in 108 – in the uncertainty range of other electrical units – at a rate of tens of millions of cycles per second. “But the current in a single SET pump is on the order of picoamperes [10-12 A],” he says, “and that’s many orders of magnitude too low to serve as a practical standard.”

So Stewart, colleague Neil Zimmerman, and co-workers are experimenting with ways to produce a current 10 000 times larger. By using all-silicon components instead of conventional metal/oxide materials, they believe that they will be able to increase the frequency at which the pump can be switched into the gigahertz range.

By running 100 pumps in parallel and combining their output, the researchers anticipate getting to a current of about 10 nanoamperes. Another innovation under development may allow them to reach a microampere, in the range that is needed to develop a working current standard. “At present, we are testing three device configurations of different complexity,” Stewart says, “and we’re trying to balance the fabrication difficulties with how accurate they can be.”

SET chip.
SET chip.

In addition to its use as an electrical current standard, a low-uncertainty, high-throughput SET pump would have two other significant benefits. The first is that it might be combined with ultra-miniature quantum standards for voltage or resistance into a single, quantum-based measurement suite that could be delivered to factory floors and laboratories. The overall effort to provide such standards for all the SI base units is known as ‘NIST-on-a-Chip,’ and is an ongoing priority of NIST’s Physical Measurement Laboratory.

The other advantage is that an SET pump could be used in conjunction with voltage and resistance standards to test Ohm’s Law. Dating from the 1820s, it states that the amount of current (I) in a conductor is equal to the voltage (V) divided by the resistance (R): I = V/R. This relationship has been the basis for countless millions of electrical devices over the past two centuries. But metrologists are interested in testing Ohm’s Law with components which rely on fundamental constants. An SET pump could provide an all-quantum mechanical environment for doing so.

In a separate effort, scientists at NIST are experimenting with an alternative technology that determines current by measuring the quantum ‘phase-slips’ they engender while travelling through a very narrow superconducting wire.

For more information visit www.nist.gov





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

The power of Matter
Editor's Choice Telecoms, Datacoms, Wireless, IoT
Matter offers a reliable, secure, seamless way to interconnect devices from different manufacturers, allowing a new level of interoperability to be enjoyed.

Read more...
Transmitting power to remote places
Altron Arrow Editor's Choice Power Electronics / Power Management
The new single-pair power over Ethernet (SPoE) allows for power and data to be transmitted over longer distances of up to 1000 metres.

Read more...
AI is revolutionising electronics manufacturing
Editor's Choice News
Artificial intelligence is transforming the electronics manufacturing industry by providing new ways to optimise production processes, reduce costs, and improve product quality.

Read more...
Designing and manufacturing robust enclosures for extreme environments
Editor's Choice Manufacturing / Production Technology, Hardware & Services
The lifecycle of robust edge devices starts with design, and all aspects, including electronic components, packaging, shipping, installation, and servicing needs to be considered at the design stage to ensure that an edge device can operate in the environment it is intended for.

Read more...
Reducing solder paste spatter during reflow
Techmet Editor's Choice Manufacturing / Production Technology, Hardware & Services
Splash is a problem that solder paste will inevitably encounter during the welding process, and distinguishing between spatter and solder ball is the first step in solving the problem.

Read more...
Products of the year 2023
Editor's Choice News
A summary of products and technologies from 2023 that are currently shaping the electronic engineering industry.

Read more...
The dream of Edge AI
Altron Arrow Editor's Choice AI & ML
AI technology carries a great promise – the idea that machines can make decisions based on the world around them, processing information like a human might. But the promise of AI is currently only being fulfilled by big machines.

Read more...
Save space and improve efficiency with a 4-switch buck-boost controller
Altron Arrow Editor's Choice Telecoms, Datacoms, Wireless, IoT
A new generation of 4-switch buck-boost controllers enables power system design with very high efficiency and high power density by using inductor DC resistance (DCR) current-sensing techniques.

Read more...
Matter 1.2 adds new capabilities
NuVision Electronics Editor's Choice Telecoms, Datacoms, Wireless, IoT
This update introduces new device types and expands the reach of Matter into new markets, while also bringing other improvements that enhance interoperability and user experience.

Read more...
Personality Profile: Paul Eveleigh
Hiconnex Editor's Choice
With a strong and experienced team behind him, he can put into practice what he has learned during his career and ultimately grow the company towards its strategic objectives.

Read more...