mobile | classic
Dataweek Electronics & Communications Technology Magazine





Follow us on:
Follow us on Facebook Share via Twitter Share via LinkedIn


Search...

Electronics Buyers' Guide

Electronics Manufacturing & Production Handbook 2019


 

The recipe for successful manufacture
11 May 2011, Design Automation

Having a knowledge of electronics and components and how to apply them to solve problems is akin to having ingredients for cooking. It is all well and good knowing the theory, but at some point the chef must get to work in the kitchen and make the meal.

Any experienced chef will tell you it takes many years of practice to be a master chef. Why? Because a true chef does not follow a recipe book. A true chef innovates in the kitchen, creating new flavours and textures whilst bringing vibrant and fresh presentation. It is art that stimulates all the senses, while meeting the most fundamental need - physical nourishment.

Releasing an excellent electronic product is the same. Though it may not be considered ‘art’ by some, the ultimate objective is to satisfy needs for the end-user, as well as (I hope) a sense of well-being or accomplishment for the creator.

Designing an electronic product is a creative process, though it is necessarily rule-bound. But design is only half the story. To create a successful product, it has to be well presented, well manufactured, valuable, useful and unique. If you miss any one of these traits, it is likely your product is just another commodity. Its lifespan will be short.

Timing and delivery are critical

In drawing the analogy between electronics and food I find one particular point that is critical to both industries – timing and delivery are key ingredients for success.

This is also one area that has caused anxiety in engineers and designers in the past. To get a product out the door involves considerable post-design labour: generating production files, design-for-manufacturing checks, assembly and service documentation, the creation of user manuals, production line purchasing and stocking – the list goes on and on. Then there are the headaches involved in ensuring the product can be assembled and shipped from the factory to the user, hopefully efficiently. It is little wonder so many western companies are turning to contract electronics manufacturing service (EMS) providers, as they promise to take these production headaches away.

But think about it: this is just like the chef doing none of the actual cooking. Instead, he gives orders to cooks who operate the stoves, ovens, pots and pans and combine the ingredients to produce the meal. There are many restaurants with kitchens that operate in this way, albeit with more hands-on chef supervision. Hands-on supervision like this is a luxury most electronics designers do not have with EMS providers, as more and more they are in different countries, speaking different languages.

Imagine dining in a restaurant where the chef is in San Jose, California, the sous-chef in Osaka, Japan, and the kitchen and cooks preparing the food are in Shenzhen, China. The meal would then have to be packaged and shipped to the point of consumption within a very short time indeed if it is to meet the needs of the consumer. If you have ever eaten an in-flight meal on an airline, you have sampled food that has been prepared in a similar way, and you know the result!

Staying true to the recipe

Recipes for manufacturing electronic products must be very precise and thorough. Luckily, preservatives are not needed as would be the case with factory-produced food. However, there are other potential hazards with the EMS production model. Counterfeit components, midnight manufacturing and IP theft are still common in spite of government efforts to stamp them out.

Other subtle problems such as unvalidated part substitutions or even partial re-design without engineering approval are more common than most manufacturers would care to admit. (In the kitchen, you do not want to use ingredients with an expired use-by date.) These often lie dormant until someone is injured by a product, or thousands of products are returned under warranty. Failures like this can finish a company or destroy its brand.

Thankfully, there are several options to mitigate against or remove the threats imposed by using EMS providers. How and when these measures are implemented, and to what level of depth, depends on each company’s level of confidence and experience with EMS providers:

1. Single-source production with a known-good EMS provider. This of course is the ‘pie-in-the-sky’ solution. Few companies really have this option, but for the ones that do, leaving the hard work of component sourcing, procurement, scheduling and so on is a nice idea. The catch is the ‘known-good’ bit. This can only come with battle-won experience.

2. Create your own EMS with your own corporate branding. Again, this one is a nice idea, but really only available to very large companies who have the resources to set up their factories wherever they please. The obvious advantages of keeping everything in house are that intellectual capital is more secure and you have complete visibility and control over manufacturing and procurement, with the added advantage of tight closed-loop feedback between manufacturing, procurement and product design.

3. Divide and conquer (split production). In this scenario, you separate procurement, PCB fabrication, mechanical fabrication, subassembly and final assembly – all to varying degrees of success. This incurs management and logistics costs, and some effort, but offers significant advantages if it is done right. Namely, you can multisource manufacturing, component procurement and assembly, taking advantage of redundancy and competition between vendors. It can also increase IP security as the assemblers do not have access to all the data necessary for complete production.

4. Build the EMS providers you use into your data management flow. Many late design revisions occur, particularly in products produced in high volumes, to improve the efficiency of manufacturing and assembly. By including the EMS providers in the revision cycle in an automated way, you avoid unauthorised changes and data movement bottlenecks while still benefiting from faster production.

At face value, items 3 and 4 above appear to be difficult. But by using the right tools these are relatively easy. Consider divide and conquer. In this scenario, having to send the Gerbers and drill files to the PCB fabricator, the BOM to a purchasing agent, and assembly instructions to the assembly house (along with various testing artifacts) is the traditional approach, and one that has a great degree of uncertainty involved.

Managing the release process

Using a release management process which captures all the necessary data for production removes doubt that the generated manufacturing data are synchronised. However, there needs to be a way to make sure the correct third parties are supplied with the correct pieces of that data which they need. When v1.0 of the Gerbers and drill files are released you need to ensure the assemblers receive the matching v1.0 assembly diagrams and pick-and-place files, and the final assemblers receive the v1.0 mechanical 3D model of the assembly. This could go all the way down to the specific revision of the firmware programming files used for factory firmware programming and testing.

It is crucial that all documents relating to a version release are managed throughout the product lifecycle. And if you are using multiple EMS providers, you need to be sure they only receive the information they need in order to do their part in manufacturing. No more, no less. So after the design is released and the outputs are generated atomically (all from the same design revision, of course) there must be a way to publish those data to a secure location. Each EMS provider should be given access to the storage area, or publishing destination, where they can access the files needed for their role. But the publishing destination also needs permission-based or role-based access so that the fabricator can only see and download the PCB fabrication related material, the assembler can only access assembly diagrams, pick-and-place files etc, and so on.

The proof of the pudding…

From the Altium Designer (Release 10 or later) user’s perspective, this publishing capability forms an integral part of a true data management solution. First, the design is released to generate the manufacturing outputs which enter a lifecycle managed item in a secure storage system – the Vault. From the item, those outputs are published to disseminate the data to the various EMS providers – either using cloud hosted storage, FTP upload or even e-mail – whatever suits you and the EMS providers.

Now, if we could only solve this problem for airline food!


Credit(s)
Supplied By: EDA Technologies
Tel: +27 12 665 0375
Fax: 086 691 4210
Email: sales@edatech.co.za
www: www.edatech.co.za
  Share on Facebook Share via Twitter Share via LinkedIn    

Further reading:

  • Altium Designer gets 2019 update
    30 April 2019, EDA Technologies, Design Automation
    Altium Designer 19, the latest version of the company’s flagship PCB design software, introduces new features aimed at making the design of complex, high-quality projects easier, faster and more accurate, ...
  • DesignSpark surpasses 750 000 members
    30 April 2019, RS Components (SA), Design Automation
    RS Components’ DesignSpark online engineering community has grown to more than 750 000 members. Launched in 2010, DesignSpark provides design engineers and students around the globe with free tools, ...
  • Python programming comes to Nordic’s multiprotocol SoCs
    30 April 2019, RF Design, Design Automation
    Nordic Semiconductor announced that Zerynth, a New York-based Internet of Things (IoT) software developer, has extended the availability of its ‘Zerynth IoT middleware’ to Nordic’s nRF52840 Bluetooth ...
  • Würth extends design tool’s functionality
    30 April 2019, Würth Elektronik eiSos, Design Automation
    Würth Elektronik eiSos has extended its free online design tool, REDEXPERT. The simulation software is a highly precise option for AC loss calculation in switch mode power supplies, and now supports calculations ...
  • Espressif jumpstarts ESP32 development
    30 April 2019, Icorp Technologies, Design Automation
    Espressif Systems has introduced two tools to assist developers using its ESP32 microcontroller platform in simplifying and speeding up their designs. As developers know, building production-ready firmware ...
  • Motor drive evaluation board
    27 March 2019, Altron Arrow, Design Automation
    Infineon Technologies’ EVAL-M1-IM818-A evaluation board was developed to support customers during their first steps of applications with CIPOS Maxi IPMs (intelligent power modules). In combination with ...
  • Würth extends design tool’s functionality
    27 March 2019, Würth Elektronik eiSos, Design Automation
    Würth Elektronik eiSos has extended its free online design tool, REDEXPERT. The simulation software is a highly precise option for AC loss calculation in switch mode power supplies, and now supports calculations ...
  • Cloud-based design and evaluation platform
    27 February 2019, Altron Arrow, Design Automation
    ON Semiconductor has rolled out Strata Developer Studio, a cloud-based development platform that provides a seamless, personalised and secure environment for engineers to evaluate and design with ON Semiconductor ...
  • AVR MCUs get beta support in MPLAB X
    30 January 2019, Avnet South Africa, Design Automation
    Microchip Technology recently announced the release of MPLAB X integrated development environment (IDE) version 5.05, which beta supports the majority of AVR microcontrollers (MCUs). This release will ...
  • Programming and debugging probe
    14 November 2018, Altron Arrow, Design Automation
    STMicroelectronics has introduced the next-generation STLINK-V3 probe for programming and debugging STM8 and STM32 microcontrollers, adding enhancements to further increase flexibility and efficiency. ...
  • Altium Designer 18
    14 November 2018, EDA Technologies, Design Automation
    To meet the needs of today’s engineer, Altium rolled out the most powerful, modern, easy-to-use release of Altium Designer to date. Spurred by feedback from the user community and with significant efforts ...
  • PICkit 4 in-circuit debugger
    14 November 2018, Tempe Technologies, Design Automation
    The low-cost MPLAB PICkit 4 programming and debugging development tool replaced Microchip Technology’s PICkit 3 programmer by offering five times faster programming, a wider voltage range (1,2 – 5 V), ...

 
 
         
Contact:
Technews Publishing (Pty) Ltd
1st Floor, Stabilitas House
265 Kent Ave, Randburg, 2194
South Africa
Publications by Technews
Dataweek Electronics & Communications Technology
Electronics Buyers’ Guide (EBG)

Hi-Tech Security Solutions
Hi-Tech Security Business Directory

Motion Control in Southern Africa
Motion Control Buyers’ Guide (MCBG)

South African Instrumentation & Control
South African Instrumentation & Control Buyers’ Guide (IBG)
Other
Terms & conditions of use, including privacy policy
PAIA Manual





 

         
    Classic | Mobile

Copyright © Technews Publishing (Pty) Ltd. All rights reserved.