Editor's Choice


LED driver for industrial power supply indication

28 March 2025 Editor's Choice Circuit & System Protection

Industrial control systems universally employ 24 V DC for their field supply voltage. The presence/absence of power supply voltage is commonly signalled by LEDs found on equipment, like the controller head unit, as well as I/O and communication modules.

LED supply lights aid in minimising installation, maintenance, and downtime in industrial systems/subsystems such as programmable logic controllers (PLCs) and distributed control system (DCS) controllers, power-supply units, sensors, and actuators. Supply LEDs should light up when defined conditions are met, like voltage being in the required operating supply range. Despite their conceptual simplicity, real implementations are not that trivial. They require voltage comparators with hysteresis, need to be self-powered, and must drive LEDs consistently.

Further requirements for such circuits are:

• Low power dissipation.

• The light must be off when the supply voltage is under the minimum operating voltage.

• The light intensity should be invariant of supply voltage.

• The circuit should be tolerant to over voltages.

• Robustness to miswiring, like negative voltages as encountered during reverse polarity.

• Simple circuits can exhibit significant dependence on component, temperature, and voltage variation.

This LED driver circuit is based on repurposing an industrial digital input chip for a function different from its originally intended application. Industrial inputs, as commonly found in industrial control systems, are based on 24 V logic and have clearly specified input current/voltage characteristics with defined input threshold voltages. A sinking input (occasionally called a p-type input) has a pull-down current specified to be larger than 2,0 mA at the maximum input high threshold voltage of 11 V for Type 3 inputs, the most common industrial input type. To minimise power dissipation, today’s digital input circuits limit and tightly regulate the input current to a level just slightly above the 2,0 mA limit.

Noticing that the 2,0 mA level coincides with common LED drive currents and that industrial digital inputs have clearly defined switching thresholds, raises the question whether a chip, like the MAX22191 single-channel digital input, would be suitable for power supply monitoring and LED driving. This industrial input device is designed to drive an opto-isolator via its OUT pin. Figure 1 shows the proposed application circuit. REXT is a current-setting resistor, allowing the OUT current to be set in the 2,0 to 2,6 mA range.

The internal current source has a tolerance of ±12,5% over temperature, input voltage, and part to part, ensuring low power dissipation and negligible light intensity variation over supply voltage. With the current source specified OUT output voltage compliance of 5,5 V, it is possible to drive most modern LEDs. The device’s 110 µA (typ) supply current ensures low power dissipation of the solution.

In operation the LED current turns on sharply at 9 V (typ) and turns off at 8 V (typ), providing 1 V hysteresis. The max-on and min-off threshold voltages are specified in the MAX22191 data sheet. Should higher threshold voltages be required, a resistor can be placed in series with the IN input, RIN (see Figure 2). The RIN value is calculated as RIN = (threshold voltage increase)/IIN.

LED control

For application cases where the LED needs to be turned on/off under logic control, the TEST input can be conveniently used, as shown in Figure 2. This allows implementing auxiliary functions like power-up delays, blinking, or other status feedback.

The solution is specified for use over the -40 to 125°C operating temperature range. The IN supply voltage is tolerant to a wide voltage range of -70 to 60 V, which provides headroom for surge protection and robustness to reverse polarity miswiring. In the event of reverse connection, the circuit has a low 1 µA input current in case of a negative input voltage.

Conclusion

The MAX22191 provides a simple means for LED power supply indication applications. Its SOT23 package and low power current-setting resistor constitute a small solution size.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Active event tracking using a novel new technique
Editor's Choice
SPAES (single photon active event sensor) 3D sensing, developed by VoxelSensors, is a breakthrough technology that solves current critical depth sensing performance limitations for robotics applications.

Read more...
ABB commits to a more inclusive future as it empowers women and youth in engineering
ABB South Africa Editor's Choice
Through structured development, inclusive hiring, and focused empowerment, ABB Electrification is shaping a more equitable and dynamic future for the engineering industry.

Read more...
RF agile transceiver
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The AD9361 is a high performance, highly integrated RF Agile Transceiver designed for use in 3G and 4G base station applications.

Read more...
Unlocking the next frontier – women leading digital transformation in South Africa’s technology sector
Editor's Choice
As South Africa celebrates Women’s Month, it is an ideal time to reflect on the critical role women are playing in shaping the country’s technology sector.

Read more...
SmartRAID 4300 Series
Altron Arrow DSP, Micros & Memory
Microchip’s disaggregated architecture leverages host CPU and PCIe infrastructure to overcome traditional storage bottlenecks in scalable, secure NVMe RAID storage solutions.

Read more...
Why GNSS positioning precision is enabling the next wave of IoT applications
iCorp Technologies Editor's Choice Telecoms, Datacoms, Wireless, IoT
While high-performance GNSS implementations are achievable with few limitations, most real-world applications must balance power consumption, form factor and accuracy requirements.

Read more...
The evolution of 4D imaging radar
Altron Arrow Telecoms, Datacoms, Wireless, IoT
4D imaging radar is redefining automotive sensing with unmatched precision, scalability and resilience and, as global adoption accelerates, this technology is poised to become a cornerstone of autonomous mobility.

Read more...
5G RedCap: Unlocking scalable IoT connectivity
iCorp Technologies Editor's Choice Telecoms, Datacoms, Wireless, IoT
As 2G and 3G networks rapidly sunset across the globe, the Internet of Things (IoT) market faces a critical challenge: how to maintain reliable cellular connectivity without the complexity or cost of full 5G.

Read more...
Bluetooth wireless SoC
Altron Arrow Telecoms, Datacoms, Wireless, IoT
he EFR32BG29 wireless SoC from Silicon Labs is a highly efficient, high memory, low-power, and ultra compact SoC designed for secure and high-performance wireless networking for IoT devices.

Read more...
Is RFoIP technology the future for signal transportation for Satcom applications?
Accutronics Editor's Choice Telecoms, Datacoms, Wireless, IoT
RFoF technology continues to be used for successful IF signal transportation in the ground segment and there is widespread belief that it will be for some time to come, especially for critical communications applications.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved